Question #99651
A particle moves along a path y=2cos 3x in such a way that the component of it velocity in x direction is 4 units. find its acceleration
1
Expert's answer
2019-12-02T09:24:33-0500

Given path,

y=2cos3xy=2cos 3x


Differentiate with respect to x, We get


dydx=2×(sin3x)×3\frac {dy}{dx} = 2 \times ( - sin 3x ) \times 3



dydx=6×sin3x\frac {dy}{dx} = -6 \times sin 3x

But, We have

dydx=4\frac {dy}{dx} = 4


So,

6×sin3x=4-6 \times sin 3x = 4


sin3x=23sin 3x = - \frac {2}{3}

We know ,

sin23x+cos23x=1sin^2 3x + cos^2 3x = 1


cos23x=1sin23xcos^2 3x = 1 - sin^2 3x


cos23x=1(23)2=149=59cos^2 3x = 1 - (\frac {-2}{3})^2 = 1 - \frac {4}{9} = \frac {5}{9}

cos3x=53cos 3x = \frac {\sqrt 5}{3}


Acceleration=d2ydx2Acceleration =\frac {d^2 y} {dx^2}


=ddx(6×sin3x)= \frac {d}{dx} ( - 6 \times sin 3x)


6×cos3x×3=18×cos3x=18×53=6×5- 6 \times cos 3x \times 3 = - 18 \times cos 3x = - 18 \times \frac {\sqrt 5}{3} = - 6 \times {\sqrt 5}

Answer:

Acceleration = 6×5- 6 \times \sqrt 5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS