Given path,
y = 2 c o s 3 x y=2cos 3x y = 2 cos 3 x
Differentiate with respect to x, We get
d y d x = 2 × ( − s i n 3 x ) × 3 \frac {dy}{dx} = 2 \times ( - sin 3x ) \times 3 d x d y = 2 × ( − s in 3 x ) × 3
d y d x = − 6 × s i n 3 x \frac {dy}{dx} = -6 \times sin 3x d x d y = − 6 × s in 3 x
But, We have
d y d x = 4 \frac {dy}{dx} = 4 d x d y = 4
So,
− 6 × s i n 3 x = 4 -6 \times sin 3x = 4 − 6 × s in 3 x = 4
s i n 3 x = − 2 3 sin 3x = - \frac {2}{3} s in 3 x = − 3 2
We know ,
s i n 2 3 x + c o s 2 3 x = 1 sin^2 3x + cos^2 3x = 1 s i n 2 3 x + co s 2 3 x = 1
c o s 2 3 x = 1 − s i n 2 3 x cos^2 3x = 1 - sin^2 3x co s 2 3 x = 1 − s i n 2 3 x
c o s 2 3 x = 1 − ( − 2 3 ) 2 = 1 − 4 9 = 5 9 cos^2 3x = 1 - (\frac {-2}{3})^2 = 1 - \frac {4}{9} = \frac {5}{9} co s 2 3 x = 1 − ( 3 − 2 ) 2 = 1 − 9 4 = 9 5
c o s 3 x = 5 3 cos 3x = \frac {\sqrt 5}{3} cos 3 x = 3 5
A c c e l e r a t i o n = d 2 y d x 2 Acceleration =\frac {d^2 y} {dx^2} A cce l er a t i o n = d x 2 d 2 y
= d d x ( − 6 × s i n 3 x ) = \frac {d}{dx} ( - 6 \times sin 3x) = d x d ( − 6 × s in 3 x )
− 6 × c o s 3 x × 3 = − 18 × c o s 3 x = − 18 × 5 3 = − 6 × 5 - 6 \times cos 3x \times 3 = - 18 \times cos 3x = - 18 \times \frac {\sqrt 5}{3} = - 6 \times {\sqrt 5} − 6 × cos 3 x × 3 = − 18 × cos 3 x = − 18 × 3 5 = − 6 × 5 Answer:
Acceleration = − 6 × 5 - 6 \times \sqrt 5 − 6 × 5
Comments