Given path,
"y=2cos 3x"
Differentiate with respect to x, We get
"\\frac {dy}{dx} = 2 \\times ( - sin 3x ) \\times 3"
"\\frac {dy}{dx} = -6 \\times sin 3x"
But, We have
"\\frac {dy}{dx} = 4"
So,
"-6 \\times sin 3x = 4"
"sin 3x = - \\frac {2}{3}"
We know ,
"sin^2 3x + cos^2 3x = 1"
"cos^2 3x = 1 - sin^2 3x"
"cos^2 3x = 1 - (\\frac {-2}{3})^2 = 1 - \\frac {4}{9} = \\frac {5}{9}"
"cos 3x = \\frac {\\sqrt 5}{3}"
"Acceleration =\\frac {d^2 y} {dx^2}"
"= \\frac {d}{dx} ( - 6 \\times sin 3x)"
"- 6 \\times cos 3x \\times 3 = - 18 \\times cos 3x = - 18 \\times \\frac {\\sqrt 5}{3} = - 6 \\times {\\sqrt 5}" Answer:
Acceleration = "- 6 \\times \\sqrt 5"
Comments
Leave a comment