Question #102137
To solve the initial value problem using the method of Laplace transforms:
y''+16y=8cos4t; y(0)=0; y'(0)=8
1
Expert's answer
2020-01-31T12:33:54-0500

y+16y=8cos4ty(0)=0,y(0)=8y''+16y'=8\cos4t\\ y(0)=0, y'(0)=8\\

Laplace transforms is

y(t)Yy(t)p2Ypy(0)y(0)==p2Yp08=p2Y8cos4tpp2+16y(t)\mapsto Y\\ y''(t)\mapsto p^2Y-py(0)-y'(0)=\\ =p^2Y-p•0-8=p^2Y-8 \\ \cos4t\mapsto\frac{p}{p^2+16}

then

p2Y8+16Y=8pp2+16(p2+16)Y=8pp2+16+8Y=8p(p2+16)2+8p2+16p^2Y-8+16Y=\frac{8p}{p^2+16}\\ (p^2+16)Y=\frac{8p}{p^2+16}+8\\ Y=\frac{8p}{(p^2+16)^2}+\frac{8}{p^2+16}

Then

8p(p2+16)2==2p4(p2+42)2tsin4t\frac{8p}{(p^2+16)^2}=\\ =\frac{2p•4}{(p^2+4^2)^2}\mapsto t\sin 4t\\

8p2+16=24p2+422sin4t\frac{8}{p^2+16}=\frac{2•4}{p^2+4^2}\mapsto 2\sin 4t

Solution is

y=tsin4t+2sin4ty=(t+2)sin4ty=t\sin4t+2\sin4t\\ y=(t+2)\sin4t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS