y′′+a2y=cosecaxy′′+a2y=sinax1
Solution can be found in the form
y=y1+y2
1) y1 is solution of equation
y′′+a2y=0λ2+a2=0λ1=ia,λ2=−ia,f1=cosax,f2=sinax
then
y1=c1cosax+c2sinax
2) solution y can be found by the method of variation of constants in the form
y=c1(x)cosax+c2(x)sinax
functions c1(x) and c2(x) can be found from the system of equations
{c1′(x)cosax+c2′(x)sinax=0c1′(x)(−asinax)+c2′(x)acosax=sinax1
Δ=∣∣cosax−asinaxsinaxacosax∣∣==acos2ax+asin2ax=aΔ1=∣∣0sinax1sinaxacosax∣∣=−1Δ2=∣∣cosax−asinax0sinax1∣∣=sinaxcosaxc1′(x)=ΔΔ1=a−1,c2′(x)=ΔΔ2=a1sinaxcosax,c1(x)=∫a−1dx=a−x+k1c2(x)=∫a1sinaxcosaxdx==a21∫sinaxd(sinax)=a21ln∣sinax∣+k2k1,k2areconstants
Then
y=(a−x+k1)cosax+(a21ln∣sinax∣+k2)sinax
Comments