y ′ ′ + a 2 y = cosec a x y ′ ′ + a 2 y = 1 sin a x y''+a^2y=\cosec ax\\
y''+a^2y=\frac{1}{\sin ax}\\ y ′′ + a 2 y = cosec a x y ′′ + a 2 y = s i n a x 1
Solution can be found in the form
y = y 1 + y 2 y=y_1+y_2 y = y 1 + y 2
1) y 1 y_1 y 1 is solution of equation
y ′ ′ + a 2 y = 0 λ 2 + a 2 = 0 λ 1 = i a , λ 2 = − i a , f 1 = cos a x , f 2 = sin a x y''+a^2y=0\\
\lambda^2+a^2=0\\
\lambda_1=ia, \lambda_2=-ia,\\
f_1=\cos ax, f_2=\sin ax\\ y ′′ + a 2 y = 0 λ 2 + a 2 = 0 λ 1 = ia , λ 2 = − ia , f 1 = cos a x , f 2 = sin a x
then
y 1 = c 1 cos a x + c 2 sin a x y_1=c_1 \cos ax+c_2 \sin ax y 1 = c 1 cos a x + c 2 sin a x
2) solution y can be found by the method of variation of constants in the form
y = c 1 ( x ) cos a x + c 2 ( x ) sin a x y=c_1(x)\cos ax+c_2(x) \sin ax y = c 1 ( x ) cos a x + c 2 ( x ) sin a x
functions c 1 ( x ) c_1(x) c 1 ( x ) and c 2 ( x ) c_2(x) c 2 ( x ) can be found from the system of equations
{ c 1 ′ ( x ) cos a x + c 2 ′ ( x ) sin a x = 0 c 1 ′ ( x ) ( − a sin a x ) + c 2 ′ ( x ) a cos a x = 1 sin a x \left\{
\begin{matrix}
c'_1(x) \cos ax+c'_2(x) \sin ax =0\\
c'_1(x)(- a\sin ax)+c'_2(x) a \cos ax =\frac{1}{\sin ax}
\end{matrix}
\right. { c 1 ′ ( x ) cos a x + c 2 ′ ( x ) sin a x = 0 c 1 ′ ( x ) ( − a sin a x ) + c 2 ′ ( x ) a cos a x = s i n a x 1
Δ = ∣ cos a x sin a x − a sin a x a cos a x ∣ = = a cos 2 a x + a sin 2 a x = a Δ 1 = ∣ 0 sin a x 1 sin a x a cos a x ∣ = − 1 Δ 2 = ∣ cos a x 0 − a sin a x 1 sin a x ∣ = cos a x sin a x c 1 ′ ( x ) = Δ 1 Δ = − 1 a , c 2 ′ ( x ) = Δ 2 Δ = 1 a cos a x sin a x , c 1 ( x ) = ∫ − 1 a d x = − x a + k 1 c 2 ( x ) = ∫ 1 a cos a x sin a x d x = = 1 a 2 ∫ d ( sin a x ) sin a x = 1 a 2 ln ∣ sin a x ∣ + k 2 k 1 , k 2 a r e c o n s t a n t s \Delta=\left|
\begin{matrix}
\cos ax & \sin ax\\
-a \sin ax & a\cos ax
\end{matrix}
\right|=\\
=a\cos^2 ax+a \sin^2 ax=a\\
\Delta_1=\left|
\begin{matrix}
0 & \sin ax\\
\frac{1}{\sin ax} & a\cos ax
\end{matrix}
\right|=-1\\
\Delta_2=\left|
\begin{matrix}
\cos ax &0\\
-a \sin ax & \frac{1}{\sin ax}
\end{matrix}
\right|= \frac{\cos ax}{\sin ax}\\
c'_1(x)=\frac{\Delta_1}{\Delta}=\frac{-1}{a}, \\
c'_2(x)=\frac{\Delta_2}{\Delta}=\frac{1}{a} \frac{\cos ax}{\sin ax}, \\
c_1(x)=\int \frac{-1}{a} dx=\frac{-x}{a} + k_1\\
c_2(x)=\int\frac{1}{a} \frac{\cos ax}{\sin ax}dx=\\
=\frac{1}{a^2} \int\frac{d(\sin ax)}{\sin ax}=\frac{1}{a^2}\ln|\sin ax|+k_2\\
k_1, k_2 \, are\,constants Δ = ∣ ∣ cos a x − a sin a x sin a x a cos a x ∣ ∣ = = a cos 2 a x + a sin 2 a x = a Δ 1 = ∣ ∣ 0 s i n a x 1 sin a x a cos a x ∣ ∣ = − 1 Δ 2 = ∣ ∣ cos a x − a sin a x 0 s i n a x 1 ∣ ∣ = s i n a x c o s a x c 1 ′ ( x ) = Δ Δ 1 = a − 1 , c 2 ′ ( x ) = Δ Δ 2 = a 1 s i n a x c o s a x , c 1 ( x ) = ∫ a − 1 d x = a − x + k 1 c 2 ( x ) = ∫ a 1 s i n a x c o s a x d x = = a 2 1 ∫ s i n a x d ( s i n a x ) = a 2 1 ln ∣ sin a x ∣ + k 2 k 1 , k 2 a re co n s t an t s
Then
y = ( − x a + k 1 ) cos a x + ( 1 a 2 ln ∣ sin a x ∣ + k 2 ) sin a x y=\left(\frac{-x}{a} + k_1\right)\cos ax + \left(\frac{1}{a^2}\ln|\sin ax|+k_2\right)\sin ax y = ( a − x + k 1 ) cos a x + ( a 2 1 ln ∣ sin a x ∣ + k 2 ) sin a x
Comments