Question #102573
Apply the method of variations of parameters to solve the following differential equations: y" +a^2y=cosec ax
1
Expert's answer
2020-02-12T11:49:48-0500

y+a2y=cosecaxy+a2y=1sinaxy''+a^2y=\cosec ax\\ y''+a^2y=\frac{1}{\sin ax}\\

Solution can be found in the form

y=y1+y2y=y_1+y_2

1) y1y_1 is solution of equation

y+a2y=0λ2+a2=0λ1=ia,λ2=ia,f1=cosax,f2=sinaxy''+a^2y=0\\ \lambda^2+a^2=0\\ \lambda_1=ia, \lambda_2=-ia,\\ f_1=\cos ax, f_2=\sin ax\\

then

y1=c1cosax+c2sinaxy_1=c_1 \cos ax+c_2 \sin ax

2) solution y can be found by the method of variation of constants in the form

y=c1(x)cosax+c2(x)sinaxy=c_1(x)\cos ax+c_2(x) \sin ax

functions c1(x)c_1(x) and c2(x)c_2(x) can be found from the system of equations

{c1(x)cosax+c2(x)sinax=0c1(x)(asinax)+c2(x)acosax=1sinax\left\{ \begin{matrix} c'_1(x) \cos ax+c'_2(x) \sin ax =0\\ c'_1(x)(- a\sin ax)+c'_2(x) a \cos ax =\frac{1}{\sin ax} \end{matrix} \right.


Δ=cosaxsinaxasinaxacosax==acos2ax+asin2ax=aΔ1=0sinax1sinaxacosax=1Δ2=cosax0asinax1sinax=cosaxsinaxc1(x)=Δ1Δ=1a,c2(x)=Δ2Δ=1acosaxsinax,c1(x)=1adx=xa+k1c2(x)=1acosaxsinaxdx==1a2d(sinax)sinax=1a2lnsinax+k2k1,k2areconstants\Delta=\left| \begin{matrix} \cos ax & \sin ax\\ -a \sin ax & a\cos ax \end{matrix} \right|=\\ =a\cos^2 ax+a \sin^2 ax=a\\ \Delta_1=\left| \begin{matrix} 0 & \sin ax\\ \frac{1}{\sin ax} & a\cos ax \end{matrix} \right|=-1\\ \Delta_2=\left| \begin{matrix} \cos ax &0\\ -a \sin ax & \frac{1}{\sin ax} \end{matrix} \right|= \frac{\cos ax}{\sin ax}\\ c'_1(x)=\frac{\Delta_1}{\Delta}=\frac{-1}{a}, \\ c'_2(x)=\frac{\Delta_2}{\Delta}=\frac{1}{a} \frac{\cos ax}{\sin ax}, \\ c_1(x)=\int \frac{-1}{a} dx=\frac{-x}{a} + k_1\\ c_2(x)=\int\frac{1}{a} \frac{\cos ax}{\sin ax}dx=\\ =\frac{1}{a^2} \int\frac{d(\sin ax)}{\sin ax}=\frac{1}{a^2}\ln|\sin ax|+k_2\\ k_1, k_2 \, are\,constants

Then

y=(xa+k1)cosax+(1a2lnsinax+k2)sinaxy=\left(\frac{-x}{a} + k_1\right)\cos ax + \left(\frac{1}{a^2}\ln|\sin ax|+k_2\right)\sin ax


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS