Solution.
1) Subtract the first expression from the second expression and equate to the third
x2−y2−yz−(x2−y2−zx)dx−dy=z(x−y)dzx2−y2−yz−x2+y2+zxd(x−y)=z(x−y)dzz(x−y)d(x−y)=z(x−y)dzd(x−y)=dz∫d(x−y)=∫dzz=x−y+C1.
Then the first integral curves is
z−x+y=C1.
2) Add the first expression to the second and equate to the third
x2−y2−yz+x2−y2−xzdx+dy=z(x−y)dz2(x2−y2)−z(x+y)d(x+y)=z(x−y)dz2(x−y)(x+y)−z(x+y)d(x+y)=z(x−y)dz
Because
x−y=z−C1.
Then
2(z−c1)(x+y)−z(x+y)d(x+y)=z(z−c1)dz(x+y)(2(z−c1)−z)d(x+y)=z(z−c1)dz(x+y)(z−2c1)d(x+y)=z(z−c1)dz(x+y)d(x+y)=z(z−c1)(z−2c1)dz(x+y)d(x+y)=z(z−c1)2z−2c1−zdz(x+y)d(x+y)=(z2−z−c11)dz∫(x+y)d(x+y)=∫(z2−z−c11)dzln∣x+y∣=2ln∣z∣−ln∣z−c1∣+ln∣c2∣x+y=z−c1z2c2
Substitute the value c1
x+y=z−(z−x+y)z2c2x+y=x−yz2c2x2−y2=z2c2
Then the second integral curves is
z2x2−y2=c2
Comments