Question #102574
Find the integral curves of the following equations:dx/(x^2–y^2–yz) = dy/(x^2–y^2–zx) = dz/[z(x–y)]
1
Expert's answer
2020-02-11T12:06:59-0500


Solution.

1) Subtract the first expression from the second expression and equate to the third

dxdyx2y2yz(x2y2zx)=dzz(xy)d(xy)x2y2yzx2+y2+zx=dzz(xy)d(xy)z(xy)=dzz(xy)d(xy)=dzd(xy)=dzz=xy+C1.\frac{dx-dy}{x^2-y^2-yz-(x^2-y^2-zx)}=\frac{dz}{z(x-y)}\\ \frac{d(x-y)}{x^2-y^2-yz-x^2+y^2+zx}=\frac{dz}{z(x-y)}\\ \frac{d(x-y)}{z(x-y)}=\frac{dz}{z(x-y)}\\ d(x-y)=dz\\ \int d(x-y)=\int dz\\ z=x-y+C_1.

Then the first integral curves is

zx+y=C1.z-x+y=C_1.

2) Add the first expression to the second and equate to the third

dx+dyx2y2yz+x2y2xz=dzz(xy)d(x+y)2(x2y2)z(x+y)=dzz(xy)d(x+y)2(xy)(x+y)z(x+y)=dzz(xy)\frac{dx+dy}{x^2-y^2-yz+x^2-y^2-xz}=\frac{dz}{z(x-y)}\\ \frac{d(x+y)}{2(x^2-y^2)-z(x+y)}=\frac{dz}{z(x-y)}\\ \frac{d(x+y)}{2(x -y )(x+y)-z(x+y)}=\frac{dz}{z(x-y)}\\

Because

 xy=zC1.x-y=z-C_1.

Then

d(x+y)2(zc1)(x+y)z(x+y)=dzz(zc1)d(x+y)(x+y)(2(zc1)z)=dzz(zc1)d(x+y)(x+y)(z2c1)=dzz(zc1)d(x+y)(x+y)=(z2c1)dzz(zc1)d(x+y)(x+y)=2z2c1zz(zc1)dzd(x+y)(x+y)=(2z1zc1)dzd(x+y)(x+y)=(2z1zc1)dzlnx+y=2lnzlnzc1+lnc2x+y=z2c2zc1\frac{d(x+y)}{2(z-c_1 )(x+y)-z(x+y)}=\frac{dz}{z(z-c_1)}\\ \frac{d(x+y)}{(x+y)(2(z-c_1)-z)}=\frac{dz}{z(z-c_1)}\\ \frac{d(x+y)}{(x+y)(z-2c_1)}=\frac{dz}{z(z-c_1)}\\ \frac{d(x+y)}{(x+y)}=\frac{(z-2c_1)dz}{z(z-c_1)}\\ \frac{d(x+y)}{(x+y)}=\frac{2z-2c_1-z}{z(z-c_1)}dz\\ \frac{d(x+y)}{(x+y)}=\left(\frac{2}{z}-\frac{1}{z-c_1}\right)dz\\ \int\frac{d(x+y)}{(x+y)}=\int\left(\frac{2}{z}-\frac{1}{z-c_1}\right)dz\\ \ln|x+y|=2\ln|z|-\ln|z-c_1|+\ln|c_2|\\ x+y=\frac{z^2 c_2}{z-c_1}

Substitute the value c1c_1

x+y=z2c2z(zx+y)x+y=z2c2xyx2y2=z2c2x+y=\frac{z^2 c_2}{z-(z-x+y)}\\ x+y=\frac{z^2 c_2}{x-y}\\ x^2-y^2=z^2 c_2

Then the second integral curves is

x2y2z2=c2\frac{x^2-y^2}{z^2}=c_2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS