Suppose z0 is any constant complex number interior to any simple closed
contour C. Show that for a positive integer n,
∮
dz
(z−z0)
n = {
2πi, n = 1
C 0, n > 1.
Express 1/(cos θ − i sin θ) in the form of a + ib and hence prove that
cosθ+isinθ/ cos θ − i sinθ = cos2θ+isin2θ.
Show that | z + w |^2 − | z − w |^2 = 4Re (zŵ).
If z=cosθ+i sinθ,prove that
zn + z−n = 2cos(nθ), z^n − z^−n = 2i sin(nθ).
Apply De Moivre’s formula to express cos 4θ and sin 4θ in terms of cos θ and sin θ.
Determine the distance between 2 − i and 3 + i on the complex plane.
Show that Re (iz) = −Im (z) and Im (iz) = Re (z). Evaluate Re (1/z) and Im (1/z) if
z = x + iy and z 6= 0.
Express 1/(cosθ − i sinθ) in the form of a + ib and hence prove that
cos θ + i sinθ
cos θ − i sinθ = cos 2θ + i sin2θ.
The PDE 2∂
2
z
∂x
2
+2∂
2
z
∂y
2
+4∂
2
z
∂x∂y
=2x
2∂2z∂x2+2∂2z∂y2+4∂2z∂x∂y=2x,
is
ind an analytic continuation 𝑓𝑡 ,𝐷𝑡 : 0 ≤ 𝑡 ≤ 1 of
𝑓0
,𝐷0
along 𝛾 and show that 𝑓1
1 = 𝑓0
1
Where 𝐷0 = 𝐵 1 , 1 𝑎𝑛𝑑 𝑓0
is restriction of the principal
branch of 𝑧 to 𝐷0
. 𝛾 𝑡 = 𝑒
2𝜋𝑖𝑡 𝑎𝑛𝑑 𝜎 𝑡 = 𝑒
4𝜋𝑖𝑡