Answer to Question #282429 in Complex Analysis for iqa

Question #282429

If z=cosθ+i sinθ,prove that

zn + z−n = 2cos(nθ), z^n − z^−n = 2i sin(nθ).


1
Expert's answer
2021-12-26T17:44:07-0500

Use De Moivre's formula


(cosθ+isinθ)n=cos(nθ)+isin(nθ),nZ(\cos\theta+i\sin \theta)^n=\cos(n\theta)+i\sin(n\theta) , n\in \Z

Then


zn=(cosθ+isinθ)n=cos(nθ)+isin(nθ)z^n=(\cos\theta+i\sin \theta)^n=\cos(n\theta)+i\sin(n\theta)

zn=(cosθ+isinθ)n=cos(nθ)+isin(nθ)z^{-n}=(\cos\theta+i\sin \theta)^{-n}=\cos(-n\theta)+i\sin(-n\theta)

=cos(nθ)isin(nθ)=\cos(n\theta)-i\sin(n\theta)


zn+zn=cos(nθ)+isin(nθ)z^n+z^{-n}=\cos(n\theta)+i\sin(n\theta)

+cos(nθ)isin(nθ)+\cos(n\theta)-i\sin(n\theta)

=2cos(nθ),nZ=2\cos(n\theta), n\in \Z


znzn=cos(nθ)+isin(nθ)z^n-z^{-n}=\cos(n\theta)+i\sin(n\theta)-

(cos(nθ)isin(nθ))-(\cos(n\theta)-i\sin(n\theta))

=2isin(nθ),nZ=2i\sin(n\theta), n\in \Z


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment