If z=cosθ+i sinθ,prove that
zn + z−n = 2cos(nθ), z^n − z^−n = 2i sin(nθ).
Use De Moivre's formula
Then
"z^{-n}=(\\cos\\theta+i\\sin \\theta)^{-n}=\\cos(-n\\theta)+i\\sin(-n\\theta)"
"=\\cos(n\\theta)-i\\sin(n\\theta)"
"+\\cos(n\\theta)-i\\sin(n\\theta)"
"=2\\cos(n\\theta), n\\in \\Z"
"-(\\cos(n\\theta)-i\\sin(n\\theta))"
"=2i\\sin(n\\theta), n\\in \\Z"
Comments
Leave a comment