Question #281343

Express 1/(cosθ − i sinθ) in the form of a + ib and hence prove that



cos θ + i sinθ



cos θ − i sinθ = cos 2θ + i sin2θ.


1
Expert's answer
2021-12-20T16:22:11-0500

1cosθisinθ=cosθ+isinθ(cosθisinθ)(cosθ+isinθ)=cosθ+isinθcos2θ+sin2θ=cosθ+isinθ\frac{1}{cos\theta -isin\theta}=\frac{cos\theta +isin\theta}{(cos\theta -isin\theta)(cos\theta +isin\theta)}=\frac{cos\theta +isin\theta}{cos^2\theta +sin^2\theta}=cos\theta +isin\theta


cosθ+isinθcosθisinθ=(cosθ+isinθ)2=cos2θ+2isinθcosθsin2θ=cos2θ+isin2θ\frac{cos\theta +isin\theta}{cos\theta -isin\theta}=(cos\theta +isin\theta)^2=cos^2\theta +2isin\theta cos\theta-sin^2\theta= cos 2θ + i sin2θ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS