Express 1/(cosθ − i sinθ) in the form of a + ib and hence prove that
cos θ + i sinθ
cos θ − i sinθ = cos 2θ + i sin2θ.
1cosθ−isinθ=cosθ+isinθ(cosθ−isinθ)(cosθ+isinθ)=cosθ+isinθcos2θ+sin2θ=cosθ+isinθ\frac{1}{cos\theta -isin\theta}=\frac{cos\theta +isin\theta}{(cos\theta -isin\theta)(cos\theta +isin\theta)}=\frac{cos\theta +isin\theta}{cos^2\theta +sin^2\theta}=cos\theta +isin\thetacosθ−isinθ1=(cosθ−isinθ)(cosθ+isinθ)cosθ+isinθ=cos2θ+sin2θcosθ+isinθ=cosθ+isinθ
cosθ+isinθcosθ−isinθ=(cosθ+isinθ)2=cos2θ+2isinθcosθ−sin2θ=cos2θ+isin2θ\frac{cos\theta +isin\theta}{cos\theta -isin\theta}=(cos\theta +isin\theta)^2=cos^2\theta +2isin\theta cos\theta-sin^2\theta= cos 2θ + i sin2θcosθ−isinθcosθ+isinθ=(cosθ+isinθ)2=cos2θ+2isinθcosθ−sin2θ=cos2θ+isin2θ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments