Question #268264

Use Cauchy’s integral formula to evaluate sin(z) /((2z + 1)*3e*z) dz


1
Expert's answer
2021-11-21T11:55:21-0500

Cauchy’s integral formula:


f(z0)=12πiCf(z)zz0dzf(z_0)=\frac{1}{2\pi i}\int_C \frac{f(z)}{z-z_0}dz


then:


sinz3ez(2z+1)=sinz3e1z(2z+1)\frac{sinz}{ 3ez(2z + 1)}=\frac{sinz}{ 3e}\cdot\frac{1}{ z(2z + 1)}


1z(2z+1)=1z22z+1\frac{1}{ z(2z + 1)}=\frac{1}{ z}-\frac{2}{ 2z + 1}


Csinz3ez(2z+1)dz=Csinz3ezdzC2sinz3e(2z+1)dz\int_C \frac{sinz}{ 3ez(2z + 1)}dz=\int_C \frac{sinz}{ 3ez}dz-\int_C \frac{2sinz}{ 3e(2z + 1)}dz


for Csinz3ezdz\int_C \frac{sinz}{ 3ez}dz :


f(z)=sinz3e,z0=0f(z)=\frac{sinz}{ 3e},z_0=0


f(0)=0    Csinz3ezdz=0f(0)=0\implies \int_C \frac{sinz}{ 3ez}dz=0


for C2sinz3e(2z+1)dz\int_C \frac{2sinz}{ 3e(2z + 1)}dz :


f(z)=sinz3e,z0=1/2f(z)=\frac{sinz}{ 3e},z_0=-1/2


f(1/2)=0.059f(-1/2)=-0.059


so,


Csinz3ez(2z+1)dz=0.0592πi=0.369i\int_C \frac{sinz}{ 3ez(2z + 1)}dz=0.059\cdot2\pi i =0.369i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS