Cauchy’s integral formula:
f(z0)=2πi1∫Cz−z0f(z)dz
then:
3ez(2z+1)sinz=3esinz⋅z(2z+1)1
z(2z+1)1=z1−2z+12
∫C3ez(2z+1)sinzdz=∫C3ezsinzdz−∫C3e(2z+1)2sinzdz
for ∫C3ezsinzdz :
f(z)=3esinz,z0=0
f(0)=0⟹∫C3ezsinzdz=0
for ∫C3e(2z+1)2sinzdz :
f(z)=3esinz,z0=−1/2
f(−1/2)=−0.059
so,
∫C3ez(2z+1)sinzdz=0.059⋅2πi=0.369i
Comments