Find z1/n; for n=3, z = 1-i in C (, the Argand Plane).
The polar form of "1\u2212i=\\sqrt{2}(\\cos(-\\dfrac{\\pi}{4}+i\\sin(-\\dfrac{\\pi}{4}))."
According to the De Moivre's Formula, all 3-th roots of a complex number
"\\sqrt{2}(\\cos(-\\dfrac{\\pi}{4}+i\\sin(-\\dfrac{\\pi}{4}))" are given by
"k=0:"
"=(2)^{1\/6}(\\cos(\\dfrac{\\pi}{12})-i\\sin(\\dfrac{\\pi}{12}))"
"k=1:"
"=(2)^{1\/6}(\\cos(\\dfrac{7\\pi}{12})+i\\sin(\\dfrac{7\\pi}{12}))"
"k=2:"
"=(2)^{1\/6}(\\cos(\\dfrac{5\\pi}{4})+i\\sin(\\dfrac{5\\pi}{4}))"
"=(2)^{-1\/3}(1+i)"
Comments
Leave a comment