Apply De Moivre’s formula to express cos 4θ and sin 4θ in terms of cos θ and sin θ.
Let us apply De Moivre’s formula to express "\\cos 4\u03b8" and "\\sin 4\u03b8" in terms of "\\cos \u03b8" and "\\sin \u03b8." It follows from De Moivre’s formula that "(\\cos\\theta+i\\sin\\theta)^4=\\cos4\\theta+i\\sin4\\theta," where "i^2=-1."
On the other hand, the Binomial Theorem implies that "(\\cos\\theta+i\\sin\\theta)^4\n\\\\=\\cos^4\\theta+4\\cos^3\\theta\\cdot i\\sin\\theta+6\\cos^2\\theta\\cdot i^2\\sin^2\\theta\n+4\\cos\\theta\\cdot i^3\\sin^3\\theta+i^4\\sin^4\\theta\n\\\\=\\cos^4\\theta+4i\\cos^3\\theta\\cdot \\sin\\theta-6\\cos^2\\theta\\cdot \\sin^2\\theta\n-4i\\cos\\theta\\cdot \\sin^3\\theta+\\sin^4\\theta\n\\\\=\\cos^4\\theta-6\\cos^2\\theta\\cdot \\sin^2\\theta\n+\\sin^4\\theta+i(4\\cos^3\\theta\\cdot \\sin\\theta-4\\cos\\theta\\cdot \\sin^3\\theta)."
Taking into account that two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal, we conclude that
"\\cos4\\theta=\\cos^4\\theta-6\\cos^2\\theta\\cdot \\sin^2\\theta\n+\\sin^4\\theta,\n\\\\\n\\sin4\\theta=4\\cos^3\\theta\\cdot \\sin\\theta-4\\cos\\theta\\cdot \\sin^3\\theta."
Comments
Leave a comment