Let us apply De Moivre’s formula to express cos4θ and sin4θ in terms of cosθ and sinθ. It follows from De Moivre’s formula that (cosθ+isinθ)4=cos4θ+isin4θ, where i2=−1.
On the other hand, the Binomial Theorem implies that (cosθ+isinθ)4=cos4θ+4cos3θ⋅isinθ+6cos2θ⋅i2sin2θ+4cosθ⋅i3sin3θ+i4sin4θ=cos4θ+4icos3θ⋅sinθ−6cos2θ⋅sin2θ−4icosθ⋅sin3θ+sin4θ=cos4θ−6cos2θ⋅sin2θ+sin4θ+i(4cos3θ⋅sinθ−4cosθ⋅sin3θ).
Taking into account that two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal, we conclude that
cos4θ=cos4θ−6cos2θ⋅sin2θ+sin4θ,sin4θ=4cos3θ⋅sinθ−4cosθ⋅sin3θ.
Comments