Show that | z + w |^2 − | z − w |^2 = 4Re (zŵ).
Let "z=a+bi, w=c+di, a,b,c,d\\in\\R."
Then
"|z-w|^2=(a-c)^2+(b-d)^2"
"|z+w|^2-|z-w|^2=(a+c)^2+(b+d)^2"
"-((a-c)^2+(b-d)^2)=4ac+4bd"
"=4(ac+bd)"
"z\u0175=(a+bi)(c-di)=ac+bd+(-ad+bc)i"
"Re(z\u0175)=ac+bd"
Hence
"a,b,c,d\\in \\R"
Therefore
Comments
Leave a comment