Question #347049

solve the cubic equation 2z3 -5z2+z-5=0


1
Expert's answer
2022-06-07T00:22:31-0400
az3+bz2+cz+d=02z35z2+z5=0a z^3 +b z^2 +c z+d=0\\ 2 z^3 - 5 z^2 + z - 5=0

a=2,  b=5,  c=1,  d=5a=2,\; b=-5,\; c=1,\; d=-5

Δ0=b23ac=19Δ1=2b39abc+27a2d=700\Delta_0=b^2-3ac=19\\ \Delta_1=2b^3-9abc+27a^2d=-700

C=Δ1+Δ124Δ0323=350+3128493C=\sqrt[3]{\frac{\Delta_1+\sqrt{\Delta_1^2-4\Delta_0^3}}{2}}=\sqrt[3]{-350+3\sqrt{12849}}

zk=13a(b+ξkC+Δ0ξkC),  k=0,1,2z_k=-\frac{1}{3a}(b+\xi^kC+\frac{\Delta_0}{\xi^kC}),\; k=0,1,2

ξ=1+i32\xi=\frac{-1+i\sqrt{3}}{2}

z0 ⁣= ⁣56 ⁣+ ⁣16((350 ⁣ ⁣312849)1/3 ⁣+ ⁣(350 ⁣+ ⁣312849)1/3)z_0\!=\!\frac{5}{6}\!+\!\frac{1}{6} ( (350\! -\! 3 \sqrt{12849})^{1/3} \!+\! (350 \!+ \!3 \sqrt{12849})^{1/3})

z1=56112(1+i3)(350312849)1/3112(1i3)(350+312849)1/3z_1=\frac{5}{6} -\frac{1}{12} (1 + i \sqrt{3}) (350 - 3 \sqrt{12849})^{1/3} \\ - \frac{1}{12} (1 - i \sqrt{3}) (350 + 3 \sqrt{12849})^{1/3}

z2=56112(1i3)(350312849)1/3112(1+i3)(350+312849)1/3z_2=\frac{5}{6} -\frac{1}{12} (1 - i \sqrt{3}) (350 - 3 \sqrt{12849})^{1/3} \\ - \frac{1}{12} (1+ i \sqrt{3}) (350 + 3 \sqrt{12849})^{1/3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS