solve the cubic equation 2z3 -5z2+z-5=0
"a=2,\\; b=-5,\\; c=1,\\; d=-5"
"\\Delta_0=b^2-3ac=19\\\\\n\\Delta_1=2b^3-9abc+27a^2d=-700"
"C=\\sqrt[3]{\\frac{\\Delta_1+\\sqrt{\\Delta_1^2-4\\Delta_0^3}}{2}}=\\sqrt[3]{-350+3\\sqrt{12849}}"
"z_k=-\\frac{1}{3a}(b+\\xi^kC+\\frac{\\Delta_0}{\\xi^kC}),\\; k=0,1,2"
"\\xi=\\frac{-1+i\\sqrt{3}}{2}"
"z_0\\!=\\!\\frac{5}{6}\\!+\\!\\frac{1}{6} ( (350\\! -\\! 3 \\sqrt{12849})^{1\/3} \n\\!+\\! (350 \\!+ \\!3 \\sqrt{12849})^{1\/3})"
"z_1=\\frac{5}{6} -\\frac{1}{12} (1 + i \\sqrt{3}) (350 - 3 \\sqrt{12849})^{1\/3} \\\\\n- \\frac{1}{12} (1 - i \\sqrt{3}) (350 + 3 \\sqrt{12849})^{1\/3}"
"z_2=\\frac{5}{6} -\\frac{1}{12} (1 - i \\sqrt{3}) (350 - 3 \\sqrt{12849})^{1\/3} \\\\\n- \\frac{1}{12} (1+ i \\sqrt{3}) (350 + 3 \\sqrt{12849})^{1\/3}"
Comments
Leave a comment