Answer to Question #344843 in Complex Analysis for Dkay

Question #344843

given z1 = 2<45 degrees, z2 =3<120 degrees and z3 =4<180 degrees. determine the following and leave your answer in rectangular form.

  1. (z1)2+z2/z2+z3
  2. z1/z2z3


1
Expert's answer
2022-05-26T11:01:46-0400

1.


(z1)2=(2)2(245°)=490°=4i(z_1)^2=(2)^2\angle(2\cdot45\degree)=4\angle90\degree=4i

z2+z3=3120°+4180°z_2+z_3=3\angle120\degree+4\angle180\degree

=3(12+32i)+4(1)=3(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i)+4(-1)

=112+332i=-\dfrac{11}{2}+\dfrac{3\sqrt{3}}{2}i


z2z2+z3=32+332i112+332i=333i1133i\dfrac{z_2}{z_2+z_3}=\dfrac{-\dfrac{3}{2}+\dfrac{3\sqrt{3}}{2}i}{-\dfrac{11}{2}+\dfrac{3\sqrt{3}}{2}i}=\dfrac{3-3\sqrt{3}i}{11-3\sqrt{3}i}

=(333i)(11+33i)121+27=\dfrac{(3-3\sqrt{3}i)(11+3\sqrt{3}i)}{121+27}

=33+93i333i+27148=\dfrac{33+9\sqrt{3}i-33\sqrt{3}i+27}{148}

=1537637i=\dfrac{15}{37}-\dfrac{6}{37}i


(z1)2+z2z2+z3=4i+1537637i(z_1)^2+\dfrac{z_2}{z_2+z_3}=4i+\dfrac{15}{37}-\dfrac{6}{37}i


=1537+14237i=\dfrac{15}{37}+\dfrac{142}{37}i



2.


z2z3=3120°(4180°)z_2z_3=3\angle120\degree(4\angle180\degree)=3(4)(120°+180°)=12300°=3(4)\angle(120\degree+180\degree)=12\angle300\degree

=12(1232i)=663i=12(\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i)=6-6\sqrt{3}i

z1z2z3=212(45°300°)\dfrac{z_1}{z_2z_3}=\dfrac{2}{12}\angle(45\degree-300\degree)

=16(cos(255°)+isin(255°))=\dfrac{1}{6}(\cos(-255\degree)+i\sin(-255\degree))

=16(cos(105°)+isin(105°))=\dfrac{1}{6}(\cos(105\degree)+i\sin(105\degree))

z1z2z3=2+2i663i\dfrac{z_1}{z_2z_3}=\dfrac{\sqrt{2}+\sqrt{2}i}{6-6\sqrt{3}i}


=(2+2i)(6+63i)36+108=\dfrac{(\sqrt{2}+\sqrt{2}i)(6+6\sqrt{3}i)}{36+108}

=(2+6i+2i6)24=\dfrac{(\sqrt{2}+\sqrt{6}i+\sqrt{2}i-\sqrt{6})}{24}

=6224+2+624i=-\dfrac{\sqrt{6}-\sqrt{2}}{24}+\dfrac{\sqrt{2}+\sqrt{6}}{24}i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment