suppose f(z) =1/z. write f in the form f(z) = u(x,y) + iv(x,y), where z = x+iy and u and v are real-valued functions
z=x+iyz=x+iyz=x+iy, where x,y∈Rx,y\in{\mathbb{R}}x,y∈R. We receive: 1z=1x+iy=x−iy(x+iy)(x−iy)=x−iyx2+y2.\frac{1}{z}=\frac{1}{x+iy}=\frac{x-iy}{(x+iy)(x-iy)}=\frac{x-iy}{x^2+y^2}.z1=x+iy1=(x+iy)(x−iy)x−iy=x2+y2x−iy. From the latter expression we receive that u=xx2+y2u=\frac{x}{x^2+y^2}u=x2+y2x and v=−yx2+y2v=\frac{-y}{x^2+y^2}v=x2+y2−y.
Answer: f(z)=u(x,y)+iv(x,y),f(z)=u(x,y)+iv(x,y),f(z)=u(x,y)+iv(x,y), where z=x+iyz=x+iyz=x+iy, x,y∈Rx,y\in{\mathbb{R}}x,y∈R; u(x,y)=xx2+y2u(x,y)=\frac{x}{x^2+y^2}u(x,y)=x2+y2x, v(x,y)=−yx2+y2v(x,y)=\frac{-y}{x^2+y^2}v(x,y)=x2+y2−y.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments