Answer to Question #343591 in Complex Analysis for Not the answer

Question #343591

Evaluate the following integrals using residue theorem: (a) ∫∞−∞ x² /(x² +9)(x² +4)²dx

1
Expert's answer
2022-05-31T11:12:57-0400

x2dx(x2+9)(x2+4)2\int_{-\infin}^{\infin}\cfrac{x^2dx}{(x^2+9)(x^2+4)^2}

Let F(x)=x2(x2+9)(x2+4)2F(x) = \cfrac{x^2}{(x^2+9)(x^2+4)^2}

FC(R)F \in C(\mathbb{R}) because xR x2+90\forall x \in \mathbb{R} \ x^2+9 \neq 0 and (x2+4)20(x^2+4)^2\neq 0

Consider F(z)=z2(z2+9)(z2+4)2,zCF(z) = \cfrac{z^2}{(z^2+9)(z^2+4)^2}, z \in \mathbb{C}

Find poles of F(z):F(z):

z=±3iz = \pm 3i - simple pole

z=±2iz = \pm2i - order 2 pole

So, using residue theorem:

x2dx(x2+9)(x2+4)2=2πi(Resz=2iF(z)+Resz=3iF(z))\int_{-\infin}^{\infin}\cfrac{x^2dx}{(x^2+9)(x^2+4)^2} = 2\pi i(\mathop{\mathrm{Res}}_{z = 2i}F(z)+\mathop{\mathrm{Res}}_{z = 3i}F(z))

Find the residuals:

Resz=3iF(z)=limz3i[F(z)(z3i)]=limz3i[z2(z+3i)(z2+4)2]=96i(9+4)=350i=3i50\mathop{\mathrm{Res}}_{z = 3i}F(z) = \lim_{z \to3i} [F(z)(z-3i)] = \lim_{z \to3i} [\cfrac{z^2}{(z+3i)(z^2+4)^2}] = \cfrac{-9}{6i \cdot(-9+4)} = \cfrac{-3}{50i} = \cfrac{3i}{50}


Resz=2iF(z)=limz2i[(z2(z2+9)(z+2i)2)]\mathop{\mathrm{Res}}_{z = 2i}F(z) = \lim_{z \to 2i}[(\cfrac{z^2}{(z^2+9)(z+2i)^2})']

Find derivative:

(z2(z2+9)(z+2i)2)=2z(z2+9)(z+2i)2z2(2z(z+2i)2+2(z+2i)(z2+9))(z2+9)2(z+2i)4(\cfrac{z^2}{(z^2+9)(z+2i)^2})' = \cfrac{2z(z^2+9)(z+2i)^2-z^2(2z(z+2i)^2+2(z+2i)(z^2+9))}{(z^2+9)^2(z+2i)^4}

Then

Resz=2iF(z)=limz2i[2z(z2+9)(z+2i)2z2(2z(z+2i)2+2(z+2i)(z2+9))(z2+9)2(z+2i)4]==4i(4+9)(4i)2+4(4i(4i)2+2(4i)(4+9))(4+9)2(4i)4=320i96i6400=3i200\mathop{\mathrm{Res}}_{z = 2i}F(z) = \lim_{z \to 2i}[\cfrac{2z(z^2+9)(z+2i)^2-z^2(2z(z+2i)^2+2(z+2i)(z^2+9))}{(z^2+9)^2(z+2i)^4}] =\\ =\cfrac{4i(-4+9)(4i)^2+4(4i(4i)^2+2(4i)(-4+9))}{(-4+9)^2(4i)^4} = \cfrac{-320i-96i}{6400} = \cfrac{-3i}{200}

And finally:

x2dx(x2+9)(x2+4)2=2πi(Resz=2iF(z)+Resz=3iF(z))=2πi(3i5013i200)=π100\int_{-\infin}^{\infin}\cfrac{x^2dx}{(x^2+9)(x^2+4)^2} = 2\pi i(\mathop{\mathrm{Res}}_{z = 2i}F(z)+\mathop{\mathrm{Res}}_{z = 3i}F(z)) = 2\pi i(\cfrac{3i}{50}-\cfrac{13i}{200}) = \cfrac{\pi}{100}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment