∫−∞∞(x2+9)(x2+4)2x2dx
Let F(x)=(x2+9)(x2+4)2x2
F∈C(R) because ∀x∈R x2+9=0 and (x2+4)2=0
Consider F(z)=(z2+9)(z2+4)2z2,z∈C
Find poles of F(z):
z=±3i - simple pole
z=±2i - order 2 pole
So, using residue theorem:
∫−∞∞(x2+9)(x2+4)2x2dx=2πi(Resz=2iF(z)+Resz=3iF(z))
Find the residuals:
Resz=3iF(z)=limz→3i[F(z)(z−3i)]=limz→3i[(z+3i)(z2+4)2z2]=6i⋅(−9+4)−9=50i−3=503i
Resz=2iF(z)=limz→2i[((z2+9)(z+2i)2z2)′]
Find derivative:
((z2+9)(z+2i)2z2)′=(z2+9)2(z+2i)42z(z2+9)(z+2i)2−z2(2z(z+2i)2+2(z+2i)(z2+9))
Then
Resz=2iF(z)=limz→2i[(z2+9)2(z+2i)42z(z2+9)(z+2i)2−z2(2z(z+2i)2+2(z+2i)(z2+9))]==(−4+9)2(4i)44i(−4+9)(4i)2+4(4i(4i)2+2(4i)(−4+9))=6400−320i−96i=200−3i
And finally:
∫−∞∞(x2+9)(x2+4)2x2dx=2πi(Resz=2iF(z)+Resz=3iF(z))=2πi(503i−20013i)=100π
Comments
Leave a comment