At first, we rewrite z = 1 + i 3 z=1+i\sqrt{3} z = 1 + i 3 in the polar form. We get: z = 2 ( 1 2 + i 3 2 ) = 2 ( cos ( π 3 ) + i sin ( π 3 ) ) z=2(\frac12+i\frac{\sqrt{3}}2)=2(\cos(\frac{\pi}{3})+i\,\sin(\frac{\pi}{3})) z = 2 ( 2 1 + i 2 3 ) = 2 ( cos ( 3 π ) + i sin ( 3 π )) .
We use the known formula (extension of de Moivre's formula) to compute the root 1 3 \frac13 3 1 . We get:
z 1 3 = 2 1 3 ( cos ( π 3 + 2 π k 3 ) + i sin ( π 3 + 2 π k 3 ) ) , z^{\frac13}=2^{\frac13}(\cos(\frac{\frac{\pi}3+2\pi k}{3})+i\,\sin(\frac{\frac{\pi}3+2\pi k}{3})), z 3 1 = 2 3 1 ( cos ( 3 3 π + 2 πk ) + i sin ( 3 3 π + 2 πk )) , where k = 0 , 1 , 2. k=0,1,2. k = 0 , 1 , 2.
We receive the following roots:
v 0 = 2 1 3 ( cos ( π 9 ) + i sin ( π 9 ) ) v_0=2^{\frac13}(\cos(\frac{{\pi}}{9})+i\,\sin(\frac{{\pi}}{9})) v 0 = 2 3 1 ( cos ( 9 π ) + i sin ( 9 π )) ,
v 1 = 2 1 3 ( cos ( 7 π 9 ) + i sin ( 7 π 9 ) ) , v_1=2^{\frac13}(\cos(\frac{{7\pi}}{9})+i\,\sin(\frac{{7\pi}}{9})), v 1 = 2 3 1 ( cos ( 9 7 π ) + i sin ( 9 7 π )) ,
v 2 = 2 1 3 ( − cos ( 4 π 9 ) − i sin ( 4 π 9 ) ) v_2=2^{\frac13}(-\cos(\frac{{4\pi}}{9})-i\,\sin(\frac{{4\pi}}{9})) v 2 = 2 3 1 ( − cos ( 9 4 π ) − i sin ( 9 4 π )) .
Answer: the cube root of z z z has the following values:
v 0 = 2 1 3 ( cos ( π 9 ) + i sin ( π 9 ) ) v_0=2^{\frac13}(\cos(\frac{{\pi}}{9})+i\,\sin(\frac{{\pi}}{9})) v 0 = 2 3 1 ( cos ( 9 π ) + i sin ( 9 π )) ,
v 1 = 2 1 3 ( cos ( 7 π 9 ) + i sin ( 7 π 9 ) ) , v_1=2^{\frac13}(\cos(\frac{{7\pi}}{9})+i\,\sin(\frac{{7\pi}}{9})), v 1 = 2 3 1 ( cos ( 9 7 π ) + i sin ( 9 7 π )) ,
v 2 = 2 1 3 ( − cos ( 4 π 9 ) − i sin ( 4 π 9 ) ) v_2=2^{\frac13}(-\cos(\frac{{4\pi}}{9})-i\,\sin(\frac{{4\pi}}{9})) v 2 = 2 3 1 ( − cos ( 9 4 π ) − i sin ( 9 4 π )) .
Comments