Calculate z^6=64
z6=64⇒z=646ei⋅2πn6,n=0,1,2,3,4,5z0=2z1=2eιπ3=2(cosπ3+isinπ3)=1+i3z2=2e2πi3=2(cos2π3+isin2π3)=−1+i3z3=2eπi=2(cosπ+isinπ)=−2z4=2e4πι3=2(cos4π3+isin4π3)=−1−i3z5=2e5πi3=2(cos5π3+isin5π3)=1−i3z^6=64\Rightarrow z=\sqrt[6]{64}e^{\frac{i\cdot 2\pi n}{6}},n=0,1,2,3,4,5\\z_0=2\\z_1=2e^{\frac{\iota \pi}{3}}=2\left( \cos \frac{\pi}{3}+i\sin \frac{\pi}{3} \right) =1+i\sqrt{3}\\z_2=2e^{\frac{2\pi i}{3}}=2\left( \cos \frac{2\pi}{3}+i\sin \frac{2\pi}{3} \right) =-1+i\sqrt{3}\\z_3=2e^{\pi i}=2\left( \cos \pi +i\sin \pi \right) =-2\\z_4=2e^{\frac{4\pi \iota}{3}}=2\left( \cos \frac{4\pi}{3}+i\sin \frac{4\pi}{3} \right) =-1-i\sqrt{3}\\z_5=2e^{\frac{5\pi i}{3}}=2\left( \cos \frac{5\pi}{3}+i\sin \frac{5\pi}{3} \right) =1-i\sqrt{3}z6=64⇒z=664e6i⋅2πn,n=0,1,2,3,4,5z0=2z1=2e3ιπ=2(cos3π+isin3π)=1+i3z2=2e32πi=2(cos32π+isin32π)=−1+i3z3=2eπi=2(cosπ+isinπ)=−2z4=2e34πι=2(cos34π+isin34π)=−1−i3z5=2e35πi=2(cos35π+isin35π)=1−i3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment