Answer to Question #319449 in Complex Analysis for Zizu

Question #319449

Calculate z^6=64

1
Expert's answer
2022-03-30T04:29:16-0400

z6=64z=646ei2πn6,n=0,1,2,3,4,5z0=2z1=2eιπ3=2(cosπ3+isinπ3)=1+i3z2=2e2πi3=2(cos2π3+isin2π3)=1+i3z3=2eπi=2(cosπ+isinπ)=2z4=2e4πι3=2(cos4π3+isin4π3)=1i3z5=2e5πi3=2(cos5π3+isin5π3)=1i3z^6=64\Rightarrow z=\sqrt[6]{64}e^{\frac{i\cdot 2\pi n}{6}},n=0,1,2,3,4,5\\z_0=2\\z_1=2e^{\frac{\iota \pi}{3}}=2\left( \cos \frac{\pi}{3}+i\sin \frac{\pi}{3} \right) =1+i\sqrt{3}\\z_2=2e^{\frac{2\pi i}{3}}=2\left( \cos \frac{2\pi}{3}+i\sin \frac{2\pi}{3} \right) =-1+i\sqrt{3}\\z_3=2e^{\pi i}=2\left( \cos \pi +i\sin \pi \right) =-2\\z_4=2e^{\frac{4\pi \iota}{3}}=2\left( \cos \frac{4\pi}{3}+i\sin \frac{4\pi}{3} \right) =-1-i\sqrt{3}\\z_5=2e^{\frac{5\pi i}{3}}=2\left( \cos \frac{5\pi}{3}+i\sin \frac{5\pi}{3} \right) =1-i\sqrt{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment