z 6 = 64 ⇒ z = 64 6 e i ⋅ 2 π n 6 , n = 0 , 1 , 2 , 3 , 4 , 5 z 0 = 2 z 1 = 2 e ι π 3 = 2 ( cos π 3 + i sin π 3 ) = 1 + i 3 z 2 = 2 e 2 π i 3 = 2 ( cos 2 π 3 + i sin 2 π 3 ) = − 1 + i 3 z 3 = 2 e π i = 2 ( cos π + i sin π ) = − 2 z 4 = 2 e 4 π ι 3 = 2 ( cos 4 π 3 + i sin 4 π 3 ) = − 1 − i 3 z 5 = 2 e 5 π i 3 = 2 ( cos 5 π 3 + i sin 5 π 3 ) = 1 − i 3 z^6=64\Rightarrow z=\sqrt[6]{64}e^{\frac{i\cdot 2\pi n}{6}},n=0,1,2,3,4,5\\z_0=2\\z_1=2e^{\frac{\iota \pi}{3}}=2\left( \cos \frac{\pi}{3}+i\sin \frac{\pi}{3} \right) =1+i\sqrt{3}\\z_2=2e^{\frac{2\pi i}{3}}=2\left( \cos \frac{2\pi}{3}+i\sin \frac{2\pi}{3} \right) =-1+i\sqrt{3}\\z_3=2e^{\pi i}=2\left( \cos \pi +i\sin \pi \right) =-2\\z_4=2e^{\frac{4\pi \iota}{3}}=2\left( \cos \frac{4\pi}{3}+i\sin \frac{4\pi}{3} \right) =-1-i\sqrt{3}\\z_5=2e^{\frac{5\pi i}{3}}=2\left( \cos \frac{5\pi}{3}+i\sin \frac{5\pi}{3} \right) =1-i\sqrt{3} z 6 = 64 ⇒ z = 6 64 e 6 i ⋅ 2 πn , n = 0 , 1 , 2 , 3 , 4 , 5 z 0 = 2 z 1 = 2 e 3 ι π = 2 ( cos 3 π + i sin 3 π ) = 1 + i 3 z 2 = 2 e 3 2 πi = 2 ( cos 3 2 π + i sin 3 2 π ) = − 1 + i 3 z 3 = 2 e πi = 2 ( cos π + i sin π ) = − 2 z 4 = 2 e 3 4 π ι = 2 ( cos 3 4 π + i sin 3 4 π ) = − 1 − i 3 z 5 = 2 e 3 5 πi = 2 ( cos 3 5 π + i sin 3 5 π ) = 1 − i 3
Comments