obtain first three terms of taylors series for f(z) = sin z about 2=0
f(0)=sin0=0f′(0)=cosz∣z=0=1f′′(0)=−sinz∣z=0=0f′′′(0)=−cosz∣z=0=−1f′v(0)=sinz∣z=0=0fv(0)=cosz∣z=0=1First 3terms:f(z)=∑n=051n!f(n)(z)zn+o(z5)=z−13!z3+15!z5+o(z5)==z−16z3+1120z5+o(z5)f\left( 0 \right) =\sin 0=0\\f'\left( 0 \right) =\cos z|_{z=0}=1\\f''\left( 0 \right) =-\sin z|_{z=0}=0\\f'''\left( 0 \right) =-\cos z|_{z=0}=-1\\f'^v\left( 0 \right) =\sin z|_{z=0}=0\\f^v\left( 0 \right) =\cos z|_{z=0}=1\\First\,\,3terms:\\f\left( z \right) =\sum_{n=0}^5{\frac{1}{n!}f^{\left( n \right)}\left( z \right) z^n}+o\left( z^5 \right) =z-\frac{1}{3!}z^3+\frac{1}{5!}z^5+o\left( z^5 \right) =\\=z-\frac{1}{6}z^3+\frac{1}{120}z^5+o\left( z^5 \right)f(0)=sin0=0f′(0)=cosz∣z=0=1f′′(0)=−sinz∣z=0=0f′′′(0)=−cosz∣z=0=−1f′v(0)=sinz∣z=0=0fv(0)=cosz∣z=0=1First3terms:f(z)=∑n=05n!1f(n)(z)zn+o(z5)=z−3!1z3+5!1z5+o(z5)==z−61z3+1201z5+o(z5)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment