Show that ๐ ๐๐๐๐ฆ = ๐ ๐ ๐๐hy
Solution in the first way. We apply the following formulas
"\\sin z=\\frac{e^{iz}-e^{-iz}}{2i}" and "\\sinh z=\\frac{e^{z}-e^{-z}}{2}". Then "\\sin iy=\\frac{e^{i(iy)}-e^{-i(iy)}}{2i}=\\frac{e^{-y}-e^{y}}{2i}=-\\frac{1}{i}\\frac{e^{y}-e^{-y}}{2}=i\\sinh y", as required.
Solution in the second way. We apply the following formulas
"\\sin z=\\sum\\limits_{n=0}^{+\\infty}\\frac{(-1)^n}{(2n+1)!}z^{2n+1}" and "\\sinh z=\\sum\\limits_{n=0}^{+\\infty}\\frac{1}{(2n+1)!}z^{2n+1}". Then
"\\sin iy=\\sum\\limits_{n=0}^{+\\infty}\\frac{(-1)^n}{(2n+1)!}(iy)^{2n+1}=\\sum\\limits_{n=0}^{+\\infty}\\frac{(-1)^n}{(2n+1)!}i^{2n+1}y^{2n+1}"
"=\\sum\\limits_{n=0}^{+\\infty}\\frac{(-1)^n}{(2n+1)!}i(-1)^ny^{2n+1}=i\\sum\\limits_{n=0}^{+\\infty}\\frac{1}{(2n+1)!}y^{2n+1}=i\\sinh y", as required.
Comments
Leave a comment