Question #297058

<e> Evaluate the integral ∮c= 1 /(z-1)(z-2)(z-4) dz where C is |z| = 3 ?




1
Expert's answer
2022-02-21T15:55:55-0500

Let us evaluate the integral cdz(z1)(z2)(z4)∮_c\frac{dz}{(z-1)(z-2)(z-4)} where CC is z=3.|z| = 3.


It follows that z1=1z_1=1 and z2=2z_2=2 are the simple poles containing in the inner part of the circle z=3.|z|=3.


According to residue theorem


cdz(z1)(z2)(z4)=2πi(Resz=11(z1)(z2)(z4)+Resz=21(z1)(z2)(z4))=2πi(1(z2)(z4)z=1+1(z1)(z4)z=2)=2πi(1(12)(14)+1(21)(24))=2πi(1312)=2πi(16)=πi3.∮_c\frac{dz}{(z-1)(z-2)(z-4)}=2\pi i(Res_{z=1}\frac{1}{(z-1)(z-2)(z-4)}+Res_{z=2}\frac{1}{(z-1)(z-2)(z-4)}) \\ =2\pi i(\frac{1}{(z-2)(z-4)}|_{z=1}+\frac{1}{(z-1)(z-4)}|_{z=2}) =2\pi i(\frac{1}{(1-2)(1-4)}+\frac{1}{(2-1)(2-4)}) \\=2\pi i(\frac{1}{3}-\frac{1}{2}) =2\pi i(-\frac{1}{6})=-\frac{\pi i}3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS