Let us evaluate the integral ∮c(z−1)(z−2)(z−4)dz where C is ∣z∣=3.
It follows that z1=1 and z2=2 are the simple poles containing in the inner part of the circle ∣z∣=3.
According to residue theorem
∮c(z−1)(z−2)(z−4)dz=2πi(Resz=1(z−1)(z−2)(z−4)1+Resz=2(z−1)(z−2)(z−4)1)=2πi((z−2)(z−4)1∣z=1+(z−1)(z−4)1∣z=2)=2πi((1−2)(1−4)1+(2−1)(2−4)1)=2πi(31−21)=2πi(−61)=−3πi.
Comments