∫∣z∣=3​(z−1)(z−2)(z−4)1​ dz
=31​∫∣z∣=3​z−11​ dz+61​∫∣z∣=3​z−41​ dz−21​∫∣z∣=3​z−21​ dz
But,
∫∣z∣=3​z−11​ dz=2πi, by Cauchy integral theorem.
∫∣z∣=3​z−41​ dz=0, by Cauchy-Goursat theorem.
∫∣z∣=3​z−21​ dz=2πi, by Cauchy integral theorem.
Thus,
∫∣z∣=3​(z−1)(z−2)(z−4)1​ dz
=31​∫∣z∣=3​z−11​ dz+61​∫∣z∣=3​z−41​ dz−21​∫∣z∣=3​z−21​ dz
=31​×2πi+61​×0−21​×2πi=−3πi​
Comments