Question #294430

What is the integral of 1/(z-1) (z-2) (2-4) dz where C is |z| = 3?


1
Expert's answer
2022-02-10T13:02:34-0500

∫∣z∣=31(z−1)(z−2)(z−4) dz\displaystyle \int_{|z|=3}\frac{1}{(z-1) (z-2) (z-4)}\ dz

=13∫∣z∣=31z−1 dz+16∫∣z∣=31z−4 dz−12∫∣z∣=31z−2 dz\displaystyle =\frac{1}{3}\int_{|z|=3}\frac{1}{z-1}\ dz+\frac{1}{6}\int_{|z|=3}\frac{1}{z-4}\ dz-\frac{1}{2}\int_{|z|=3}\frac{1}{z-2}\ dz

But,

∫∣z∣=31z−1 dz=2Ï€i\displaystyle \int_{|z|=3}\frac{1}{z-1}\ dz=2\pi i, by Cauchy integral theorem.


∫∣z∣=31z−4 dz=0\displaystyle \int_{|z|=3}\frac{1}{z-4}\ dz=0, by Cauchy-Goursat theorem.


∫∣z∣=31z−2 dz=2Ï€i\displaystyle \int_{|z|=3}\frac{1}{z-2}\ dz=2\pi i, by Cauchy integral theorem.


Thus,

∫∣z∣=31(z−1)(z−2)(z−4) dz\displaystyle \int_{|z|=3}\frac{1}{(z-1) (z-2) (z-4)}\ dz

=13∫∣z∣=31z−1 dz+16∫∣z∣=31z−4 dz−12∫∣z∣=31z−2 dz\displaystyle =\frac{1}{3}\int_{|z|=3}\frac{1}{z-1}\ dz+\frac{1}{6}\int_{|z|=3}\frac{1}{z-4}\ dz-\frac{1}{2}\int_{|z|=3}\frac{1}{z-2}\ dz

=13×2πi+16×0−12×2πi=−πi3\displaystyle =\frac{1}{3}\times 2\pi i+\frac{1}{6}\times 0-\frac{1}{2}\times2\pi i=-\frac{\pi i}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS