∫∣z∣=3(z−1)(z−2)(z−4)1 dz
=31∫∣z∣=3z−11 dz+61∫∣z∣=3z−41 dz−21∫∣z∣=3z−21 dz
But,
∫∣z∣=3z−11 dz=2πi, by Cauchy integral theorem.
∫∣z∣=3z−41 dz=0, by Cauchy-Goursat theorem.
∫∣z∣=3z−21 dz=2πi, by Cauchy integral theorem.
Thus,
∫∣z∣=3(z−1)(z−2)(z−4)1 dz
=31∫∣z∣=3z−11 dz+61∫∣z∣=3z−41 dz−21∫∣z∣=3z−21 dz
=31×2πi+61×0−21×2πi=−3πi
Comments