Question #294430

What is the integral of 1/(z-1) (z-2) (2-4) dz where C is |z| = 3?


1
Expert's answer
2022-02-10T13:02:34-0500

z=31(z1)(z2)(z4) dz\displaystyle \int_{|z|=3}\frac{1}{(z-1) (z-2) (z-4)}\ dz

=13z=31z1 dz+16z=31z4 dz12z=31z2 dz\displaystyle =\frac{1}{3}\int_{|z|=3}\frac{1}{z-1}\ dz+\frac{1}{6}\int_{|z|=3}\frac{1}{z-4}\ dz-\frac{1}{2}\int_{|z|=3}\frac{1}{z-2}\ dz

But,

z=31z1 dz=2πi\displaystyle \int_{|z|=3}\frac{1}{z-1}\ dz=2\pi i, by Cauchy integral theorem.


z=31z4 dz=0\displaystyle \int_{|z|=3}\frac{1}{z-4}\ dz=0, by Cauchy-Goursat theorem.


z=31z2 dz=2πi\displaystyle \int_{|z|=3}\frac{1}{z-2}\ dz=2\pi i, by Cauchy integral theorem.


Thus,

z=31(z1)(z2)(z4) dz\displaystyle \int_{|z|=3}\frac{1}{(z-1) (z-2) (z-4)}\ dz

=13z=31z1 dz+16z=31z4 dz12z=31z2 dz\displaystyle =\frac{1}{3}\int_{|z|=3}\frac{1}{z-1}\ dz+\frac{1}{6}\int_{|z|=3}\frac{1}{z-4}\ dz-\frac{1}{2}\int_{|z|=3}\frac{1}{z-2}\ dz

=13×2πi+16×012×2πi=πi3\displaystyle =\frac{1}{3}\times 2\pi i+\frac{1}{6}\times 0-\frac{1}{2}\times2\pi i=-\frac{\pi i}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS