Find the inverse Laplace Transform of {1/s^3(s^2+1)}
We shall find the inverse laplace transform analytically of
"\\displaystyle\\frac{1}{s^{3}(s^{2}+1)}"
We shall first resolve the expression by partial fraction
"\\displaystyle\\frac{1}{s^{3}(s^{2}+1)}=\\frac{A}{s}+\\frac{B}{s^{2}}+\\frac{C}{s^{3}}+\\frac{Ds+E}{s^{2}+1}"
"1\\equiv As^{2}(s^{2}+1)+Bs(s^{2}+1)+C(s^{2}+1)+Ds^{4}+Es^{3}"
It follows that
"[s^{4}]" "A+D=0"
"[s^{3}]" "B+E=0"
"[s^{2}]" "A+C=0"
"[s]" "B=0 \\implies E=0"
We have that "C=1\\implies A=-1, D=1"
NOW, we have
"\\displaystyle\\frac{1}{s^{3}(s^{2}+1)}=\\frac{-1}{s}+\\frac{1}{s^{3}}+\\frac{s}{s^{2}+1}"
"\\mathcal{L}^{-1}\\left\\{\\displaystyle\\frac{1}{s^{3}(s^{2}+1}\\right\\}=\\mathcal{L}^{-1}\\left\\{\\frac{-1}{s}+\\frac{1}{s^{3}}+\\frac{s}{s^{2}+1}\\right\\}"
"=\\mathcal{L}^{-1}\\left\\{\\frac{-1}{s}\\right\\}+\\mathcal{L}^{-1}\\left\\{\\frac{1}{s^{3}}\\right\\}+\\mathcal{L}^{-1}\\left\\{\\frac{s}{s^{2}+1}\\right\\}"
"=-1+\\frac{t^{2}}{2}+cos(t)"
"=cos(t)+\\frac{t^{2}}{2}-1"
which is the inverse laplace transform of "\\displaystyle\\frac{1}{s^{3}(s^{2}+1)}"
Comments
Leave a comment