find inverse laplace transorm : se^-2s/(s^2 + pi^2)
"\\qquad\\text{By property of Laplace Transform,}\\\\\nif\\ \\mathcal{L}^{-1}(G(s))=g(t), then\\\\\n\\mathcal{L}^{-1}(e^{-as}G(s))=u(t-a)\\times g(t-a)\\\\\n\\quad\\\\\nNow,\\mathcal{L}(f(t))=\\frac{se^{-2s}}{s^2+\\pi^2}=F(s)\\\\\n\\Rightarrow f(t)=\\mathcal{L}^{-1}(F(s))=\\mathcal{L}^{-1}(\\frac{se^{-2s}}{s^2+\\pi^2})=\\mathcal{L}^{-1}(e^{-2s}\\times \\frac{s}{s^2+\\pi^2})\\\\\n\\qquad\\qquad\\qquad\\qquad\\qquad\\qquad\\qquad\\quad=\\mathcal{L}^{-1}(e^{-2s}\\times G(s)), where\\ G(s)=\\frac{s}{s^2+\\pi^2}\\\\\nBut, \\mathcal{L}^{-1}(G(s))=\\mathcal{L}^{-1}(\\frac{s}{s^2+\\pi^2})=\\cos(\\pi t)=g(t), thus\\\\\n\\Rightarrow f(t)=\\mathcal{L}^{-1}(e^{-2s}\\times G(s))\\\\\n\\qquad\\quad =u(t-2)\\times g(t-2), \\text{from the above stated property where a=2}\\\\\n\\qquad\\quad =u(t-2)\\times \\cos(\\pi(t-2)), since\\ g(t)=\\cos(\\pi t)\\\\\nThus, \\mathcal{L}^{-1}(\\frac{se^{-2s}}{s^2+\\pi^2})=u(t-2)\\times \\cos(\\pi(t-2))."
Comments
Leave a comment