Cauchy’s integral formula:
f ( z 0 ) = 1 2 π i ∫ C f ( z ) z − z 0 d z f(z_0)=\frac{1}{2\pi i}\int_C \frac{f(z)}{z-z_0}dz f ( z 0 ) = 2 πi 1 ∫ C z − z 0 f ( z ) d z
for any z0 inside C
we have:
∫ C z 2 + 3 z + 2 i z 2 + 3 z − 4 d z \int_C \frac{z^2+3z+2i}{z^2+3z-4}dz ∫ C z 2 + 3 z − 4 z 2 + 3 z + 2 i d z
z 2 + 3 z − 4 = 0 z^2+3z-4=0 z 2 + 3 z − 4 = 0
z = − 3 ± 9 + 16 2 z=\frac{-3\pm \sqrt{9+16}}{2} z = 2 − 3 ± 9 + 16
so,
z 0 = − 4 , 1 z_0=-4,1 z 0 = − 4 , 1
z 2 + 3 z + 2 i z 2 + 3 z − 4 = z 2 + 3 z + 2 i ( z + 4 ) ( z − 1 ) \frac{z^2+3z+2i}{z^2+3z-4}=\frac{z^2+3z+2i}{(z+4)(z-1)} z 2 + 3 z − 4 z 2 + 3 z + 2 i = ( z + 4 ) ( z − 1 ) z 2 + 3 z + 2 i
a)
for |z| = 2:
z 0 = 1 z_0=1 z 0 = 1 is inside C
then:
f ( z ) = z 2 + 3 z + 2 i z + 4 f(z)=\frac{z^2+3z+2i}{z+4} f ( z ) = z + 4 z 2 + 3 z + 2 i
∫ C z 2 + 3 z + 2 i z 2 + 3 z − 4 d z = 2 π i f ( 1 ) = 2 π i ( 4 + 2 i ) / 5 = π ( − 4 + 8 i ) / 5 \int_C \frac{z^2+3z+2i}{z^2+3z-4}dz=2\pi if(1)=2\pi i(4+2i)/5=\pi(-4 +8i)/5 ∫ C z 2 + 3 z − 4 z 2 + 3 z + 2 i d z = 2 πi f ( 1 ) = 2 πi ( 4 + 2 i ) /5 = π ( − 4 + 8 i ) /5
b)
for |z + 5| = 3/2:
z 0 = − 4 z_0=-4 z 0 = − 4 is inside C
then:
f ( z ) = z 2 + 3 z + 2 i z − 1 f(z)=\frac{z^2+3z+2i}{z-1} f ( z ) = z − 1 z 2 + 3 z + 2 i
∫ C z 2 + 3 z + 2 i z 2 + 3 z − 4 d z = 2 π i f ( − 4 ) = − 2 π i ( 4 + 2 i ) / 5 = π ( 4 − 8 i ) / 5 \int_C \frac{z^2+3z+2i}{z^2+3z-4}dz=2\pi if(-4)=-2\pi i(4+2i)/5=\pi(4 -8i)/5 ∫ C z 2 + 3 z − 4 z 2 + 3 z + 2 i d z = 2 πi f ( − 4 ) = − 2 πi ( 4 + 2 i ) /5 = π ( 4 − 8 i ) /5
Comments