Cauchy’s integral formula:
f(z0)=2πi1∫Cz−z0f(z)dz
for any z0 inside C
we have:
∫Cz2+3z−4z2+3z+2idz
z2+3z−4=0
z=2−3±9+16
so,
z0=−4,1
z2+3z−4z2+3z+2i=(z+4)(z−1)z2+3z+2i
a)
for |z| = 2:
z0=1 is inside C
then:
f(z)=z+4z2+3z+2i
∫Cz2+3z−4z2+3z+2idz=2πif(1)=2πi(4+2i)/5=π(−4+8i)/5
b)
for |z + 5| = 3/2:
z0=−4 is inside C
then:
f(z)=z−1z2+3z+2i
∫Cz2+3z−4z2+3z+2idz=2πif(−4)=−2πi(4+2i)/5=π(4−8i)/5
Comments