Question #284384

Use Cauchy’s Integral formulas to evaluate the following integral along the


indicated closed contours.



z


2+3z+2i


z


2+3z−4


dz;



C



(a) |z| = 2 (b) |z + 5| =


3


2

1
Expert's answer
2022-01-03T17:17:20-0500

Cauchy’s integral formula:

f(z0)=12πiCf(z)zz0dzf(z_0)=\frac{1}{2\pi i}\int_C \frac{f(z)}{z-z_0}dz

 for any z0 inside C


we have:

Cz2+3z+2iz2+3z4dz\int_C \frac{z^2+3z+2i}{z^2+3z-4}dz


z2+3z4=0z^2+3z-4=0

z=3±9+162z=\frac{-3\pm \sqrt{9+16}}{2}

so,

z0=4,1z_0=-4,1

z2+3z+2iz2+3z4=z2+3z+2i(z+4)(z1)\frac{z^2+3z+2i}{z^2+3z-4}=\frac{z^2+3z+2i}{(z+4)(z-1)}

a)

for  |z| = 2:

z0=1z_0=1 is inside C

then:

f(z)=z2+3z+2iz+4f(z)=\frac{z^2+3z+2i}{z+4}


Cz2+3z+2iz2+3z4dz=2πif(1)=2πi(4+2i)/5=π(4+8i)/5\int_C \frac{z^2+3z+2i}{z^2+3z-4}dz=2\pi if(1)=2\pi i(4+2i)/5=\pi(-4 +8i)/5


b)

for  |z + 5| = 3/2:

z0=4z_0=-4 is inside C

then:

f(z)=z2+3z+2iz1f(z)=\frac{z^2+3z+2i}{z-1}


Cz2+3z+2iz2+3z4dz=2πif(4)=2πi(4+2i)/5=π(48i)/5\int_C \frac{z^2+3z+2i}{z^2+3z-4}dz=2\pi if(-4)=-2\pi i(4+2i)/5=\pi(4 -8i)/5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS