Find all possible Taylor's series and Laurent series expansions of f(z)= (2z - 3)/((z - 2)(z - 1)) about z=0?
Resolving into partial fraction.
"f(z)= \\frac{1}{z-2}+\\frac{1}{z-1}\\\\\n\\text{for }\\frac{1}{z-1},\\text{in not negative power of z}\\\\\n\\frac{1}{z-1} = -(\\frac{1}{1-z}) = -\\sum_{n=0}^\\infty z^n~~~valid ~if~|z|<1\\\\\n\\text{for }\\frac{1}{z-1},\\text{in negative power of z}\\\\\n\\frac{1}{z-1} =\\frac{1}{z(1-z^{-1})} = \\sum_{n=0}^\\infty \\frac{1}{z^{n+1}}~~valid ~if~|z|>1\\\\\n\n\\text{for }\\frac{1}{z-2},\\text{in not negative power of z}\\\\\n\n\\frac{1}{z-2} =\\frac{1}{z(1-\\frac{1}{2}z)} = \\sum_{n=0}^\\infty \\frac{2^n}{z^{n+1}}~~valid ~if~|z|>2\\\\\n\n\\frac{1}{z-2} =-[\\frac{1}{2(1-\\frac{1}{2}z)}] = -\\sum_{n=0}^\\infty \\frac{z^n}{2^{n+1}}~~valid ~if~|z|<2\\\\\n\\\\\n\nf(z)=-\\sum_{n=0}^\\infty (1+\\frac{1}{2^{n+1}}z^n)~~valid ~if~|z|<1\\\\\n\nf(z)=-\\sum_{n=0}^\\infty ({2^{n+1}}) \\frac{1}{z^n}~~valid ~if~|z|<1\\\\"
Comments
Leave a comment