Answer to Question #286643 in Complex Analysis for Potti

Question #286643

Find all possible Taylor's series and Laurent series expansions of f(z)= (2z - 3)/((z - 2)(z - 1)) about z=0?


1
Expert's answer
2022-01-19T16:23:59-0500

Resolving into partial fraction.

f(z)=1z2+1z1for 1z1,in not negative power of z1z1=(11z)=n=0zn   valid if z<1for 1z1,in negative power of z1z1=1z(1z1)=n=01zn+1  valid if z>1for 1z2,in not negative power of z1z2=1z(112z)=n=02nzn+1  valid if z>21z2=[12(112z)]=n=0zn2n+1  valid if z<2f(z)=n=0(1+12n+1zn)  valid if z<1f(z)=n=0(2n+1)1zn  valid if z<1f(z)= \frac{1}{z-2}+\frac{1}{z-1}\\ \text{for }\frac{1}{z-1},\text{in not negative power of z}\\ \frac{1}{z-1} = -(\frac{1}{1-z}) = -\sum_{n=0}^\infty z^n~~~valid ~if~|z|<1\\ \text{for }\frac{1}{z-1},\text{in negative power of z}\\ \frac{1}{z-1} =\frac{1}{z(1-z^{-1})} = \sum_{n=0}^\infty \frac{1}{z^{n+1}}~~valid ~if~|z|>1\\ \text{for }\frac{1}{z-2},\text{in not negative power of z}\\ \frac{1}{z-2} =\frac{1}{z(1-\frac{1}{2}z)} = \sum_{n=0}^\infty \frac{2^n}{z^{n+1}}~~valid ~if~|z|>2\\ \frac{1}{z-2} =-[\frac{1}{2(1-\frac{1}{2}z)}] = -\sum_{n=0}^\infty \frac{z^n}{2^{n+1}}~~valid ~if~|z|<2\\ \\ f(z)=-\sum_{n=0}^\infty (1+\frac{1}{2^{n+1}}z^n)~~valid ~if~|z|<1\\ f(z)=-\sum_{n=0}^\infty ({2^{n+1}}) \frac{1}{z^n}~~valid ~if~|z|<1\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment