Answer to Question #285662 in Complex Analysis for Sga

Question #285662

show that u e^-2xy sin x2 y2 is harmonic

1
Expert's answer
2022-01-10T12:24:22-0500
u=e2xysin(x2y2)u=e^{-2xy}\sin(x^2-y^2)

ux=2ye2xysin(x2y2)+2xe2xycos(x2y2)\dfrac{\partial u}{\partial x}=-2ye^{-2xy}\sin(x^2-y^2)+2xe^{-2xy}\cos(x^2-y^2)

2ux2=4y2e2xysin(x2y2)4xye2xycos(x2y2)\dfrac{\partial^2 u}{\partial x^2}=4y^2e^{-2xy}\sin(x^2-y^2)-4xye^{-2xy}\cos(x^2-y^2)

+2e2xycos(x2y2)4xye2xycos(x2y2)+2e^{-2xy}\cos(x^2-y^2)-4xye^{-2xy}\cos(x^2-y^2)

4x2e2xysin(x2y2)-4x^2e^{-2xy}\sin(x^2-y^2)

uy=2xe2xysin(x2y2)2ye2xycos(x2y2)\dfrac{\partial u}{\partial y}=-2xe^{-2xy}\sin(x^2-y^2)-2ye^{-2xy}\cos(x^2-y^2)

2uy2=4x2e2xysin(x2y2)+4xye2xycos(x2y2)\dfrac{\partial^2 u}{\partial y^2}=4x^2e^{-2xy}\sin(x^2-y^2)+4xye^{-2xy}\cos(x^2-y^2)

2e2xycos(x2y2)+4xye2xycos(x2y2)-2e^{-2xy}\cos(x^2-y^2)+4xye^{-2xy}\cos(x^2-y^2)

4y2e2xysin(x2y2)-4y^2e^{-2xy}\sin(x^2-y^2)


2ux2+2uy2=4y2e2xysin(x2y2)\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}=4y^2e^{-2xy}\sin(x^2-y^2)

8xye2xycos(x2y2)+2e2xycos(x2y2)-8xye^{-2xy}\cos(x^2-y^2)+2e^{-2xy}\cos(x^2-y^2)

4x2e2xysin(x2y2)+4x2e2xysin(x2y2)-4x^2e^{-2xy}\sin(x^2-y^2)+4x^2e^{-2xy}\sin(x^2-y^2)

+8xye2xycos(x2y2)2e2xycos(x2y2)+8xye^{-2xy}\cos(x^2-y^2)-2e^{-2xy}\cos(x^2-y^2)

4y2e2xysin(x2y2)=0-4y^2e^{-2xy}\sin(x^2-y^2)=0

Hence


2u=2ux2+2uy2=0,x,yR\nabla^2u=\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}=0, x, y\in \R

Therefore the function u=e2xysin(x2y2)u=e^{-2xy}\sin(x^2-y^2) is harmonic.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment