show that u e^-2xy sin x2 y2 is harmonic
"\\dfrac{\\partial u}{\\partial x}=-2ye^{-2xy}\\sin(x^2-y^2)+2xe^{-2xy}\\cos(x^2-y^2)"
"\\dfrac{\\partial^2 u}{\\partial x^2}=4y^2e^{-2xy}\\sin(x^2-y^2)-4xye^{-2xy}\\cos(x^2-y^2)"
"+2e^{-2xy}\\cos(x^2-y^2)-4xye^{-2xy}\\cos(x^2-y^2)"
"-4x^2e^{-2xy}\\sin(x^2-y^2)"
"\\dfrac{\\partial u}{\\partial y}=-2xe^{-2xy}\\sin(x^2-y^2)-2ye^{-2xy}\\cos(x^2-y^2)"
"\\dfrac{\\partial^2 u}{\\partial y^2}=4x^2e^{-2xy}\\sin(x^2-y^2)+4xye^{-2xy}\\cos(x^2-y^2)"
"-2e^{-2xy}\\cos(x^2-y^2)+4xye^{-2xy}\\cos(x^2-y^2)"
"-4y^2e^{-2xy}\\sin(x^2-y^2)"
"-8xye^{-2xy}\\cos(x^2-y^2)+2e^{-2xy}\\cos(x^2-y^2)"
"-4x^2e^{-2xy}\\sin(x^2-y^2)+4x^2e^{-2xy}\\sin(x^2-y^2)"
"+8xye^{-2xy}\\cos(x^2-y^2)-2e^{-2xy}\\cos(x^2-y^2)"
"-4y^2e^{-2xy}\\sin(x^2-y^2)=0"
Hence
Therefore the function "u=e^{-2xy}\\sin(x^2-y^2)" is harmonic.
Comments
Leave a comment