u=e−2xysin(x2−y2)
∂x∂u=−2ye−2xysin(x2−y2)+2xe−2xycos(x2−y2)
∂x2∂2u=4y2e−2xysin(x2−y2)−4xye−2xycos(x2−y2)
+2e−2xycos(x2−y2)−4xye−2xycos(x2−y2)
−4x2e−2xysin(x2−y2)
∂y∂u=−2xe−2xysin(x2−y2)−2ye−2xycos(x2−y2)
∂y2∂2u=4x2e−2xysin(x2−y2)+4xye−2xycos(x2−y2)
−2e−2xycos(x2−y2)+4xye−2xycos(x2−y2)
−4y2e−2xysin(x2−y2)
∂x2∂2u+∂y2∂2u=4y2e−2xysin(x2−y2)
−8xye−2xycos(x2−y2)+2e−2xycos(x2−y2)
−4x2e−2xysin(x2−y2)+4x2e−2xysin(x2−y2)
+8xye−2xycos(x2−y2)−2e−2xycos(x2−y2)
−4y2e−2xysin(x2−y2)=0
Hence
∇2u=∂x2∂2u+∂y2∂2u=0,x,y∈R Therefore the function u=e−2xysin(x2−y2) is harmonic.
Comments
Leave a comment