Question #288816

Geometric representation of S={Im(z-i)=|z+I|}


1
Expert's answer
2022-01-19T18:10:26-0500

1. Let z=x+iy,x,yRz=x+iy, x, y \in \R

Then


Im(zi)=Im(x+iyi)=y1Im(z-i)=Im(x+iy-i)=y-1

z+i=x+iy+i=x2+(y+1)2|z+i|=|x+iy+i|=\sqrt{x^2+(y+1)^2}

We have the equation

y1=x2+(y+1)2y-1=\sqrt{x^2+(y+1)^2}

x2+(y+1)20=>y1\sqrt{x^2+(y+1)^2}\geq0=>y\geq1

If y1,y\geq1, then

x2+(y+1)2y+1>y1\sqrt{x^2+(y+1)^2}\geq y+1>y-1

Therefore, the equation


y1=x2+(y+1)2y-1=\sqrt{x^2+(y+1)^2}

has no solution.


2. Let z=x+iy,x,yRz=x+iy, x, y \in \R

Then


Im(zi)=Im(x+iyi)=y1Im(z-i)=Im(x+iy-i)=y-1

z+1=x+1+iy=(x+1)2+y2|z+1|=|x+1+iy|=\sqrt{(x+1)^2+y^2}

We have the equation

y1=(x+1)2+y2y-1=\sqrt{(x+1)^2+y^2}

(x+1)2+y20=>y1\sqrt{(x+1)^2+y^2}\geq0=>y\geq1

If y1,y\geq1, then

(x+1)2+y2y>y1\sqrt{(x+1)^2+y^2}\geq y>y-1

Therefore, the equation


y1=(x+1)2+y2y-1=\sqrt{(x+1)^2+y^2}

has no solution.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS