1. Let z=x+iy,x,y∈R 
Then
Im(z−i)=Im(x+iy−i)=y−1 
∣z+i∣=∣x+iy+i∣=x2+(y+1)2 We have the equation
y−1=x2+(y+1)2 
x2+(y+1)2≥0=>y≥1 If y≥1, then 
x2+(y+1)2≥y+1>y−1 Therefore, the equation
y−1=x2+(y+1)2 has no solution.
2. Let z=x+iy,x,y∈R 
Then
Im(z−i)=Im(x+iy−i)=y−1 
∣z+1∣=∣x+1+iy∣=(x+1)2+y2 We have the equation
y−1=(x+1)2+y2 
(x+1)2+y2≥0=>y≥1 If y≥1, then 
(x+1)2+y2≥y>y−1 Therefore, the equation
y−1=(x+1)2+y2 has no solution.
 
Comments