Geometric representation of S={Im(z-i)=|z+I|}
1. Let "z=x+iy, x, y \\in \\R"
Then
"|z+i|=|x+iy+i|=\\sqrt{x^2+(y+1)^2}"
We have the equation
"y-1=\\sqrt{x^2+(y+1)^2}""\\sqrt{x^2+(y+1)^2}\\geq0=>y\\geq1"
If "y\\geq1," then
"\\sqrt{x^2+(y+1)^2}\\geq y+1>y-1"Therefore, the equation
has no solution.
2. Let "z=x+iy, x, y \\in \\R"
Then
"|z+1|=|x+1+iy|=\\sqrt{(x+1)^2+y^2}"
We have the equation
"y-1=\\sqrt{(x+1)^2+y^2}""\\sqrt{(x+1)^2+y^2}\\geq0=>y\\geq1"
If "y\\geq1," then
"\\sqrt{(x+1)^2+y^2}\\geq y>y-1"Therefore, the equation
has no solution.
Comments
Leave a comment