Find inverse Laplace transform of F(s) = 50 (s + 1)(s + 5)
"\\displaystyle\n\\mathcal{L}(f(t))=F(s)=\\frac{50}{(s+1)(s+5)}=\\frac{25}{2(s+1)}-\\frac{25}{2(s+5)}\\\\\n\\Rightarrow f(t)=\\mathcal{L}^{-1}F(s)=\\mathcal{L}^{-1} \\left( \\frac{25}{2(s+1)}-\\frac{25}{2(s+5)}\\right)=\\frac{25}{2}\\mathcal{L}^{-1}\\left(\\frac{1}{s+1}\\right)-\\frac{25}{2}\\mathcal{L}^{-1}\\left(\\frac{1}{s+5}\\right)\\\\\n\\Rightarrow f(t)=\\frac{25}{2}\\times e^{-t}-\\frac{25}{2}\\times e^{-5t}\\\\\nHence, \\\\\n\\mathcal{L}^{-1} \\left( \\frac{25}{2(s+1)}-\\frac{25}{2(s+5)}\\right)=\\frac{25e^{-t}}{2}-\\frac{25e^{-5t}}{2}=\\frac{25\\left(e^{-t} -e^{-5t}\\right)}{2}"
Comments
Leave a comment