Find inverse Laplace transform of F(s) = 50 (s + 1)(s + 5)
L(f(t))=F(s)=50(s+1)(s+5)=252(s+1)−252(s+5)⇒f(t)=L−1F(s)=L−1(252(s+1)−252(s+5))=252L−1(1s+1)−252L−1(1s+5)⇒f(t)=252×e−t−252×e−5tHence,L−1(252(s+1)−252(s+5))=25e−t2−25e−5t2=25(e−t−e−5t)2\displaystyle \mathcal{L}(f(t))=F(s)=\frac{50}{(s+1)(s+5)}=\frac{25}{2(s+1)}-\frac{25}{2(s+5)}\\ \Rightarrow f(t)=\mathcal{L}^{-1}F(s)=\mathcal{L}^{-1} \left( \frac{25}{2(s+1)}-\frac{25}{2(s+5)}\right)=\frac{25}{2}\mathcal{L}^{-1}\left(\frac{1}{s+1}\right)-\frac{25}{2}\mathcal{L}^{-1}\left(\frac{1}{s+5}\right)\\ \Rightarrow f(t)=\frac{25}{2}\times e^{-t}-\frac{25}{2}\times e^{-5t}\\ Hence, \\ \mathcal{L}^{-1} \left( \frac{25}{2(s+1)}-\frac{25}{2(s+5)}\right)=\frac{25e^{-t}}{2}-\frac{25e^{-5t}}{2}=\frac{25\left(e^{-t} -e^{-5t}\right)}{2}L(f(t))=F(s)=(s+1)(s+5)50=2(s+1)25−2(s+5)25⇒f(t)=L−1F(s)=L−1(2(s+1)25−2(s+5)25)=225L−1(s+11)−225L−1(s+51)⇒f(t)=225×e−t−225×e−5tHence,L−1(2(s+1)25−2(s+5)25)=225e−t−225e−5t=225(e−t−e−5t)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment