1a) Find the real numbers a and b such that
i5(3 - 2i)2 - (a - bi) = a - bi.
b. Let z1 = √3 + i and z2 = √3 - i. Show that
z161 + z261 = 261√3.
(Remember that: cos(- θ) = cos(θ), sin(θ) = -sin(θ) = -sin(θ), cos(2kπ + θ) = cos(θ) and sin(2kπ + θ) = sin(θ) )
1a)
"i(9-12i-4)=2a-2bi"
"12+5i=2a-2bi"
"a=6, b=-5\/2"
b.
"z_2=\\sqrt{3}-i=2(\\cos (-\\pi\/6)+i\\sin (-\\pi\/6))"
"z_1^{61}=(2(\\cos (\\pi\/6)+i\\sin (\\pi\/6)))^{61}"
"=2^{61}(\\cos (61\\pi\/6)+i\\sin (61\\pi\/6))"
"=2^{61}(\\cos (\\pi\/6)+i\\sin (\\pi\/6))"
"z_2^{61}=(2(\\cos (-\\pi\/6)+i\\sin (-\\pi\/6)))^{61}"
"=2^{61}(\\cos (-61\\pi\/6)+i\\sin (-61\\pi\/6))"
"=2^{61}(\\cos (-\\pi\/6)+i\\sin (-\\pi\/6))"
"=2^{61}(\\cos (\\pi\/6)-i\\sin (\\pi\/6))"
"z_1^{61}+z_2^{61}=2^{61}(\\cos (\\pi\/6)+i\\sin (\\pi\/6))"
"+2^{61}(\\cos (\\pi\/6)-i\\sin (\\pi\/6))"
"=2^{61}(2\\cos (\\pi\/6))=2^{61}\\sqrt{3}"
Comments
Leave a comment