∫ C f = [ z ( t ) = t 2 + i t 2 d z ( t ) = ( 2 t + 2 i t ) d t = 2 ( 1 + i ) t d t f ( z ) = x 2 + i y 2 = = ( t 2 ) 2 + i ( t 2 ) 2 = = ( 1 + i ) t 4 ] = ∫ 0 1 ( 1 + i ) t 4 ⋅ 2 ( 1 + i ) t d t = = 2 ( 1 + i ) 2 ∫ 0 1 t 5 d t = 2 ⋅ 2 i 6 = 2 3 i \int_C{f}=\left[ \begin{array}{c} z\left( t \right) =t^2+it^2\\ dz\left( t \right) =\left( 2t+2it \right) dt=2\left( 1+i \right) tdt\\ f\left( z \right) =x^2+iy^2=\\ =\left( t^2 \right) ^2+i\left( t^2 \right) ^2=\\ =\left( 1+i \right) t^4\\\end{array} \right] =\int_0^1{\left( 1+i \right) t^4\cdot 2\left( 1+i \right) tdt}=\\=2\left( 1+i \right) ^2\int_0^1{t^5dt}=\frac{2\cdot 2i}{6}=\frac{2}{3}i ∫ C f = ⎣ ⎡ z ( t ) = t 2 + i t 2 d z ( t ) = ( 2 t + 2 i t ) d t = 2 ( 1 + i ) t d t f ( z ) = x 2 + i y 2 = = ( t 2 ) 2 + i ( t 2 ) 2 = = ( 1 + i ) t 4 ⎦ ⎤ = ∫ 0 1 ( 1 + i ) t 4 ⋅ 2 ( 1 + i ) t d t = = 2 ( 1 + i ) 2 ∫ 0 1 t 5 d t = 6 2 ⋅ 2 i = 3 2 i
Comments