1 + i = a + b i \sqrt{1+i}=a+bi 1 + i = a + bi
1 + i = ( a + b i ) 2 1+i=(a+bi)^2 1 + i = ( a + bi ) 2
1 + i = ( a 2 − b 2 ) + 2 a b i 1+i=(a^2-b^2)+2abi 1 + i = ( a 2 − b 2 ) + 2 abi
Equating real and imaginary parts gives us;
1 = a 2 − b 2 1=a^2-b^2 1 = a 2 − b 2
1=2ab
This is a simultaneous equation and so we are going to solve by substituting;
a = 1 2 b a=\frac{1}{2b} a = 2 b 1
1 = ( 1 2 b ) 2 − b 2 = 1 4 b 2 − b 2 1=(\frac{1}{2b})^2-b^2=\frac{1}{4b^2}-b^2 1 = ( 2 b 1 ) 2 − b 2 = 4 b 2 1 − b 2
4 b 2 = 1 − 4 b 4 4b^2=1-4b^4 4 b 2 = 1 − 4 b 4
4 b 4 + 4 b 2 − 1 = 0 4b^4+4b^2-1=0 4 b 4 + 4 b 2 − 1 = 0
b 2 = − 4 ± 4 2 − 4 ( 4 ) ( − 1 ) 2 ( 4 ) = − 1 ± 2 2 b^2=\frac{-4 \plusmn \sqrt{4^2-4(4)(-1)}}{2(4)}=\frac{-1 \plusmn \sqrt{2}}{2} b 2 = 2 ( 4 ) − 4 ± 4 2 − 4 ( 4 ) ( − 1 ) = 2 − 1 ± 2
b 2 = − 1 − 2 2 b^2=\frac{-1-\sqrt{2}}{2} b 2 = 2 − 1 − 2 has no real roots so we take the positive value
b = ± 2 ( 2 − 1 ) 2 b=\plusmn \frac{\sqrt{2(\sqrt{2}-1)}}{2} b = ± 2 2 ( 2 − 1 )
a = ± 2 2 − 1 + 2 2 − 1 2 a= \plusmn \frac{2\sqrt{\sqrt{2}-1}+\sqrt{2\sqrt{2}-1}}{2} a = ± 2 2 2 − 1 + 2 2 − 1
So finally the two possible roots of the complex number 1+i are ;
± ( 2 2 − 1 + 2 2 − 1 2 + 2 ( 2 − 1 ) 2 i ) \plusmn (\frac{2\sqrt{\sqrt{2}-1}+\sqrt{2\sqrt{2}-1}}{2}+ \frac{\sqrt{2(\sqrt{2}-1)}}{2}i) ± ( 2 2 2 − 1 + 2 2 − 1 + 2 2 ( 2 − 1 ) i )
Comments