Find square root of 1+i
"\\sqrt{1+i}=a+bi"
"1+i=(a+bi)^2"
"1+i=(a^2-b^2)+2abi"
Equating real and imaginary parts gives us;
"1=a^2-b^2"
1=2ab
This is a simultaneous equation and so we are going to solve by substituting;
"a=\\frac{1}{2b}"
"1=(\\frac{1}{2b})^2-b^2=\\frac{1}{4b^2}-b^2"
"4b^2=1-4b^4"
"4b^4+4b^2-1=0"
"b^2=\\frac{-4 \\plusmn \\sqrt{4^2-4(4)(-1)}}{2(4)}=\\frac{-1 \\plusmn \\sqrt{2}}{2}"
"b^2=\\frac{-1-\\sqrt{2}}{2}" has no real roots so we take the positive value
"b=\\plusmn \\frac{\\sqrt{2(\\sqrt{2}-1)}}{2}"
"a= \\plusmn \\frac{2\\sqrt{\\sqrt{2}-1}+\\sqrt{2\\sqrt{2}-1}}{2}"
So finally the two possible roots of the complex number 1+i are ;
"\\plusmn (\\frac{2\\sqrt{\\sqrt{2}-1}+\\sqrt{2\\sqrt{2}-1}}{2}+ \\frac{\\sqrt{2(\\sqrt{2}-1)}}{2}i)"
Comments
Leave a comment