Find two different linear mappings which map imz>3 onto rez>3
φ(z)=−iz:z=x+iy,y>3φ(z)=−i(x+iy)=y−ix⇒Reφ(z)>3φ(z)=−iz+i:z=x+iy,y>3φ(z)=−i(x+iy)+i=y−i(x−1)⇒Reφ(z)>3\varphi \left( z \right) =-iz:\\z=x+iy,y>3\\\varphi \left( z \right) =-i\left( x+iy \right) =y-ix\Rightarrow \mathrm{Re}\varphi \left( z \right) >3\\\varphi \left( z \right) =-iz+i:\\z=x+iy,y>3\\\varphi \left( z \right) =-i\left( x+iy \right) +i=y-i\left( x-1 \right) \Rightarrow \mathrm{Re}\varphi \left( z \right) >3φ(z)=−iz:z=x+iy,y>3φ(z)=−i(x+iy)=y−ix⇒Reφ(z)>3φ(z)=−iz+i:z=x+iy,y>3φ(z)=−i(x+iy)+i=y−i(x−1)⇒Reφ(z)>3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments