expand f(z)=z/(z-1)(2-z) in a laurent series valid 1<|z|<2
"\\dfrac{z}{(z-1)(2-z)}=\\dfrac{A}{z-1}+\\dfrac{B}{2-z}=\\dfrac{2A-Az+Bz-B}{(z-1)(2-z)}"
"z^0: 0=2A-B"
"z^1: 1=-A+B"
"A=1, B=2"
"f(z)=\\dfrac{z}{(z-1)(2-z)}=\\dfrac{1}{z-1}+\\dfrac{2}{2-z}"
Geometric series
"\\dfrac{2}{2-z}=\\dfrac{1}{1-\\dfrac{z}{2}}=\\displaystyle\\sum_{i=0}^n\\dfrac{z^n}{2^n}, |z|<2"
"\\dfrac{z}{(z-1)(2-z)}=1+\\displaystyle\\sum_{i=1}^n\\bigg(\\dfrac{1}{z^n}+\\dfrac{z^n}{2^n}\\bigg),1<|z|<2"
Comments
Leave a comment