Answer to Question #235246 in Complex Analysis for Fozia Sayda

Question #235246

Evaluate the integral \oint ezt/z2+1 dz where c is the circle |z|=3.



1
Expert's answer
2021-09-10T15:17:16-0400

Inside the contour C={zC:z=3}C=\{z\in\mathbb{C}:|z|=3\}, the function eztz2+1\frac{e^{zt}}{z^2+1} has 2 simple poles at z=iz=i and z=iz=-i. Hence, according to the residue theorem,

Ceztz2+1dz=2πi(resz=ieztz2+1+resz=ieztz2+1)\oint\limits_C \frac{e^{zt}}{z^2+1}dz=2\pi i({\rm res}_{z=i}\frac{e^{zt}}{z^2+1}+{\rm res}_{z=-i}\frac{e^{zt}}{z^2+1})

resz=ieztz2+1=limzieztz2+1(zi)=limzieztz+i=eit2i\operatorname{res}_{z=i}\frac{e^{zt}}{z^2+1}=\lim\limits_{z\to i}\frac{e^{zt}}{z^2+1}(z-i)=\lim\limits_{z\to i}\frac{e^{zt}}{z +i}=\frac{e^{it}}{2i}

resz=ieztz2+1=limzieztz2+1(z+i)=limzieztzi=eit2i{\rm res}_{z=-i}\frac{e^{zt}}{z^2+1}=\lim\limits_{z\to i}\frac{e^{zt}}{z^2+1}(z+i)=\lim\limits_{z\to i}\frac{e^{zt}}{z -i}=-\frac{e^{-it}}{2i}

Therefore,

Ceztz2+1dz=2πi(eit2ieit2i)=2πisint\oint\limits_C \frac{e^{zt}}{z^2+1}dz=2\pi i(\frac{e^{it}}{2i}-\frac{e^{-it}}{2i})=2\pi i\sin t


Answer. Ceztz2+1dz=2πisint\oint\limits_C \frac{e^{zt}}{z^2+1}dz=2\pi i\sin t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment