∫ 0 2 π d θ 2 + cos θ = ∫ 0 2 π 2 d θ 4 + e i θ + e − i θ = ∫ 0 2 π 2 e i θ d θ 4 e i θ + e 2 i θ + 1 = \int\limits_{0}^{2\pi} \frac{d\theta}{2+\cos \theta}=\int\limits_{0}^{2\pi} \frac{2d\theta}{4+e^{i\theta}+e^{-i\theta}}=\int\limits_{0}^{2\pi} \frac{2e^{i\theta}d\theta}{4e^{i\theta}+e^{2i\theta}+1}= 0 ∫ 2 π 2 + c o s θ d θ = 0 ∫ 2 π 4 + e i θ + e − i θ 2 d θ = 0 ∫ 2 π 4 e i θ + e 2 i θ + 1 2 e i θ d θ =
= 2 i ∫ 0 2 π d e i θ e 2 i θ + 4 e i θ + 1 = 2 i ∮ ∣ z ∣ = 1 d z z 2 + 4 z + 1 = 2 i ∮ ∣ z ∣ = 1 d z ( z + 2 + 3 ) ( z + 2 − 3 ) =\frac{2}{i}\int\limits_{0}^{2\pi} \frac{de^{i\theta}}{e^{2i\theta}+4e^{i\theta}+1}=\frac{2}{i}\oint\limits_{|z|=1}\frac{dz}{z^2+4z+1}=\frac{2}{i}\oint\limits_{|z|=1}\frac{dz}{(z+2+\sqrt{3})(z+2-\sqrt{3})} = i 2 0 ∫ 2 π e 2 i θ + 4 e i θ + 1 d e i θ = i 2 ∣ z ∣ = 1 ∮ z 2 + 4 z + 1 d z = i 2 ∣ z ∣ = 1 ∮ ( z + 2 + 3 ) ( z + 2 − 3 ) d z
Only one pole, z = − 2 + 3 z=-2+\sqrt{3} z = − 2 + 3 , is inside the contour { ∣ z ∣ = 1 } \{|z|=1\} { ∣ z ∣ = 1 } , therefore, by the residue theorem we have
∫ 0 2 π d θ 2 + cos θ = 2 i 2 π i r e s z = − 2 + 3 1 ( z + 2 + 3 ) ( z + 2 − 3 ) = \int\limits_{0}^{2\pi} \frac{d\theta}{2+\cos \theta}=\frac{2}{i}2\pi i\,{\rm res}_{z=-2+\sqrt{3}}\frac{1}{(z+2+\sqrt{3})(z+2-\sqrt{3})}= 0 ∫ 2 π 2 + c o s θ d θ = i 2 2 πi res z = − 2 + 3 ( z + 2 + 3 ) ( z + 2 − 3 ) 1 =
= 4 π lim z → − 2 + 3 1 z + 2 + 3 = 2 π 3 =4\pi\lim\limits_{z\to -2+\sqrt{3}}\frac{1}{z+2+\sqrt{3}}=\frac{2\pi}{\sqrt{3}} = 4 π z → − 2 + 3 lim z + 2 + 3 1 = 3 2 π
Answer . 2 π 3 \frac{2\pi}{\sqrt{3}} 3 2 π
Comments