determine the poles and the residues at each pole of the function f(z)=z2-2z/(z+1)2(z2+4)
"f(z)=\\frac{z^2-2z}{(z+1)^2(z^2+4)}=\\frac{z^2-2z}{(z+1)^2(z+2i)(z-2i)}"
This function is rational, thus, its poles are roots od the denominator. Therefore, this function has poles at "z=-1" (of multiplicity 2), "z=2i" and "z=-2i" (of multiplicity 1).
"{\\rm res}_{z=1}f(z)=\\frac{d}{dz}[(z+1)^2f(z)]_{z=1}=\\frac{d}{dz}[\\frac{z^2-2z}{z^2+4}]_{z=1}"
"\\frac{d}{dz}[\\frac{z^2-2z}{z^2+4}]=\\frac{(2z-2)(z^2+4)-(z^2-2z)\\cdot 2z}{(z^2+4)^2}=\\frac{2z^2+8z-8}{(z^2+4)^2}", therefore,
"{\\rm res}_{z=1}f(z)=[\\frac{2z^2+8z-8}{(z^2+4)^2}]_{z=1}=\\frac{2}{25}"
"{\\rm res}_{z=2i}f(z)=\\lim\\limits_{z\\to2i}[(z-2i)f(z)]=\\lim\\limits_{z\\to2i}[\\frac{z^2-2z}{(z+1)^2(z+2i)}]"
"=\\frac{(2i)^2-2\\cdot 2i}{(2i+1)^2(2i+2i)}=\\frac{i-1}{(2i+1)^2}=\\frac{(i-1)(2i-1)^2}{(2i+1)^2(2i-1)^2}=\\frac{7+i}{25}"
"{\\rm res}_{z=-2i}f(z)=\\lim\\limits_{z\\to-2i}[(z+2i)f(z)]=\\lim\\limits_{z\\to-2i}[\\frac{z^2-2z}{(z+1)^2(z-2i)}]"
"=\\frac{(-2i)^2-2\\cdot(- 2i)}{(1-2i)^2(-2i-2i)}=\\frac{-i-1}{(1-2i)^2}=\\frac{(-i-1)(2i+1)^2}{(1-2i)^2(2i+1)^2}=\\frac{7-i}{25}"
Comments
Leave a comment