Question #235577

determine the poles and the residues at each pole of the function f(z)=z2-2z/(z+1)2(z2+4)


1
Expert's answer
2021-09-13T00:30:13-0400

f(z)=z22z(z+1)2(z2+4)=z22z(z+1)2(z+2i)(z2i)f(z)=\frac{z^2-2z}{(z+1)^2(z^2+4)}=\frac{z^2-2z}{(z+1)^2(z+2i)(z-2i)}

This function is rational, thus, its poles are roots od the denominator. Therefore, this function has poles at z=1z=-1 (of multiplicity 2), z=2iz=2i and z=2iz=-2i (of multiplicity 1).


resz=1f(z)=ddz[(z+1)2f(z)]z=1=ddz[z22zz2+4]z=1{\rm res}_{z=1}f(z)=\frac{d}{dz}[(z+1)^2f(z)]_{z=1}=\frac{d}{dz}[\frac{z^2-2z}{z^2+4}]_{z=1}

ddz[z22zz2+4]=(2z2)(z2+4)(z22z)2z(z2+4)2=2z2+8z8(z2+4)2\frac{d}{dz}[\frac{z^2-2z}{z^2+4}]=\frac{(2z-2)(z^2+4)-(z^2-2z)\cdot 2z}{(z^2+4)^2}=\frac{2z^2+8z-8}{(z^2+4)^2}, therefore,

resz=1f(z)=[2z2+8z8(z2+4)2]z=1=225{\rm res}_{z=1}f(z)=[\frac{2z^2+8z-8}{(z^2+4)^2}]_{z=1}=\frac{2}{25}


resz=2if(z)=limz2i[(z2i)f(z)]=limz2i[z22z(z+1)2(z+2i)]{\rm res}_{z=2i}f(z)=\lim\limits_{z\to2i}[(z-2i)f(z)]=\lim\limits_{z\to2i}[\frac{z^2-2z}{(z+1)^2(z+2i)}]

=(2i)222i(2i+1)2(2i+2i)=i1(2i+1)2=(i1)(2i1)2(2i+1)2(2i1)2=7+i25=\frac{(2i)^2-2\cdot 2i}{(2i+1)^2(2i+2i)}=\frac{i-1}{(2i+1)^2}=\frac{(i-1)(2i-1)^2}{(2i+1)^2(2i-1)^2}=\frac{7+i}{25}



resz=2if(z)=limz2i[(z+2i)f(z)]=limz2i[z22z(z+1)2(z2i)]{\rm res}_{z=-2i}f(z)=\lim\limits_{z\to-2i}[(z+2i)f(z)]=\lim\limits_{z\to-2i}[\frac{z^2-2z}{(z+1)^2(z-2i)}]

=(2i)22(2i)(12i)2(2i2i)=i1(12i)2=(i1)(2i+1)2(12i)2(2i+1)2=7i25=\frac{(-2i)^2-2\cdot(- 2i)}{(1-2i)^2(-2i-2i)}=\frac{-i-1}{(1-2i)^2}=\frac{(-i-1)(2i+1)^2}{(1-2i)^2(2i+1)^2}=\frac{7-i}{25}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS