f(z)=(z+1)2(z2+4)z2−2z=(z+1)2(z+2i)(z−2i)z2−2z
This function is rational, thus, its poles are roots od the denominator. Therefore, this function has poles at z=−1 (of multiplicity 2), z=2i and z=−2i (of multiplicity 1).
resz=1f(z)=dzd[(z+1)2f(z)]z=1=dzd[z2+4z2−2z]z=1
dzd[z2+4z2−2z]=(z2+4)2(2z−2)(z2+4)−(z2−2z)⋅2z=(z2+4)22z2+8z−8, therefore,
resz=1f(z)=[(z2+4)22z2+8z−8]z=1=252
resz=2if(z)=z→2ilim[(z−2i)f(z)]=z→2ilim[(z+1)2(z+2i)z2−2z]
=(2i+1)2(2i+2i)(2i)2−2⋅2i=(2i+1)2i−1=(2i+1)2(2i−1)2(i−1)(2i−1)2=257+i
resz=−2if(z)=z→−2ilim[(z+2i)f(z)]=z→−2ilim[(z+1)2(z−2i)z2−2z]
=(1−2i)2(−2i−2i)(−2i)2−2⋅(−2i)=(1−2i)2−i−1=(1−2i)2(2i+1)2(−i−1)(2i+1)2=257−i
Comments