Answer to Question #216748 in Complex Analysis for subodh gupta

Question #216748

Find the value of ∫c 1/𝑍𝑑𝑧, where C is circle 𝑧=𝑒^𝑖∅, 0≤∅≤𝜋


1
Expert's answer
2021-07-14T06:25:44-0400

I=C1zdz   where,z=eiθ,  0θπI=\int _C \dfrac{1}{z}dz\ \ \ where, z=e^{i\theta},\ \ 0\leq\theta \leq \pi


We know that

Cf(z)dz=abf(w(θ))w(θ)dθ     ,aθb\int_C f(z)dz=\int _a^b f(w(\theta))\cdot w'(\theta)d\theta\ \ \ \ \ , a\leq \theta \leq b


f(z)=1zf(z)=\dfrac{1}{z} , w(θ)=eiθ,  w(θ)=eiθi=ieiθw(\theta )= e^{i\theta},\ \ w'(\theta)=e^{i\theta}\cdot i=ie^{i\theta}


I=C1zdz=0πf(eiθ)ieiθdθ=0π1eiθieiθdθ     I=0πidθ=iθ]0π=πiI=\int _C \dfrac{1}{z}dz=\int_0^{\pi}f(e^{i\theta})\cdot ie^{i\theta}d\theta=\int_0^\pi \dfrac{1}{e^{i\theta}}\cdot ie^{i\theta}d\theta\\\ \\\implies I=\int_0^\pi id\theta=i\theta]_0^{\pi}=\pi i


Hence,

I=C1zdz=πiI=\int _C \dfrac{1}{z}dz=\pi i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment