Find the value of ∫c 1/𝑍𝑑𝑧, where C is circle 𝑧=𝑒^𝑖∅, 0≤∅≤𝜋
I=∫C1zdz where,z=eiθ, 0≤θ≤πI=\int _C \dfrac{1}{z}dz\ \ \ where, z=e^{i\theta},\ \ 0\leq\theta \leq \piI=∫Cz1dz where,z=eiθ, 0≤θ≤π
We know that
∫Cf(z)dz=∫abf(w(θ))⋅w′(θ)dθ ,a≤θ≤b\int_C f(z)dz=\int _a^b f(w(\theta))\cdot w'(\theta)d\theta\ \ \ \ \ , a\leq \theta \leq b∫Cf(z)dz=∫abf(w(θ))⋅w′(θ)dθ ,a≤θ≤b
f(z)=1zf(z)=\dfrac{1}{z}f(z)=z1 , w(θ)=eiθ, w′(θ)=eiθ⋅i=ieiθw(\theta )= e^{i\theta},\ \ w'(\theta)=e^{i\theta}\cdot i=ie^{i\theta}w(θ)=eiθ, w′(θ)=eiθ⋅i=ieiθ
I=∫C1zdz=∫0πf(eiθ)⋅ieiθdθ=∫0π1eiθ⋅ieiθdθ ⟹ I=∫0πidθ=iθ]0π=πiI=\int _C \dfrac{1}{z}dz=\int_0^{\pi}f(e^{i\theta})\cdot ie^{i\theta}d\theta=\int_0^\pi \dfrac{1}{e^{i\theta}}\cdot ie^{i\theta}d\theta\\\ \\\implies I=\int_0^\pi id\theta=i\theta]_0^{\pi}=\pi iI=∫Cz1dz=∫0πf(eiθ)⋅ieiθdθ=∫0πeiθ1⋅ieiθdθ ⟹I=∫0πidθ=iθ]0π=πi
Hence,
I=∫C1zdz=πiI=\int _C \dfrac{1}{z}dz=\pi iI=∫Cz1dz=πi
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment