Solution.
7.1
Derive the 4th roots of W=-8i
Write the complex number in polar form
If W=a+bi=rcosθ +irsinθ
r=a2+b2=0+(−8)2=8
θ=tan−1(0−8)=−2π=−90°
W=8cos(-90°)+i8sin(-90°)
By De Moivres theorem,
W1/n=r1/n[cosn(2πk+θ)+isinn(2πk+θ)]
Where k=0,1,2...,n-1
1st root ,take k=0
841[cos(−22.5°)+isin(−22.5°)]=1.554−0.6436i
2nd root ,take k=1
841 [Cos(-22.5°+90°)+iSin(-22.5°+90°)]=0.6436+1.554i
3rd root ,take k=2
841[Cos(-22.5+180°)+iSin (-22.5°+180°)]=-1.554+0.6436i
4th root,take k=3
841 [Cos(-22.5+270°)+iSin (-22.5°+270°)=-0.6436-1.554i
7.2
Solution
De Moivres theorem;
Cosnθ+iSinnθ=(cosθ+isinθ)n
Cos 4θ=Re(cosθ+iSinθ)4)
Cos4θ=Re(Cos4θ+4Cos3θ(isinθ)+6cos2θ(isinθ)2+4cosθ(isinθ)3+(isinθ)4)
Answer;
Cos4θ=cos4θ−6cos2θsin2θ+sin4θ
sin5θ
By De Moivre's Theorem;
Cos5θ+isin5θ=(cosθ+isinθ)5
Cos5θ +isin5θ can now be expressed as;
Cos5θ+isin5θ=cos5θ+5cos4θisinθ+10cos3θi2sin2θ+10cos2θi3sin3θ+5cosθi4sin4θ+i5sin5θ
Group real parts and imaginary parts together;
Cos5θ+isin5θ=(cos5θ−10cos3θsin2θ+5cosθsin4θ)+i(5cos4θsinθ−10cos2θsin3θ+sin5θ)
Equate the imaginary parts of both sides together;
isin5θ=i(5cos4θsinθ−10cos2θsin3θ+sin5θ)
Divide out i
Answer
Sin5θ=5cos4θsinθ−10cos2θsin3θ+sin5θ)
7.3
Solution:
By De Moivre's Theorem;
zn+z-n=2cosnθ
Take n=1
2cosθ =z1+z-1
(2cosθ )6=(z1+z-1)6
(2cosθ)6 =z6+6z4+15z2+20+15z-2+6z-4+z-6
64cos6θ =(z6+z-6)+6(z4+z-4)+15(z2+z-2)+20
64cos6θ=2cos6θ+12cos4θ+30cos2θ+20
Divide by 64;
Answer
Cos6θ=322cos6θ+163cos4θ+3215cos2θ+165
7.4
Solution;
Find Cos3θ
(2cosθ)3=(z1+z-1)3=z3+3z1+3z-1+z-3
8cos3θ =(z3+z-3)+3(z1+z-1)
=2cos3θ+6cosθ
cos3θ=41cos3θ+43cosθ
Find sin4θ
(2isinθ )4=(z4-z-4)4=z4-4z4+6+4z-2+z-4
16sin4θ =2cos4θ−6cos2θ+6
Sin4θ=81cos4θ−21cos2θ+83
Therefore;
cos2θsin4θ=(41cos3θ+83cosθ)(81cos4θ−21cos2θ+83)
Using the identity ;
CosAcosB=21 [Cos(A+B)+Cos(A-B)
Simplify.
Answer;
641(cos7θ−cos5θ−3cos3θ+3cosθ)
Comments