Question #214416

Use De Moivre’s Theorem to

(7.1) derive the 4th roots of w = −8i

(7.2) express cos(4θ) and sin(5θ) in terms of powers of cos θ and sin θ

(7.3) expand cos6θ in terms of multiple powers of z based on θ

(7.4) express cos3θ sin4θ in terms of multiple angles.


1
Expert's answer
2021-07-13T09:18:43-0400

Solution.

7.1

Derive the 4th roots of W=-8i

Write the complex number in polar form

If W=a+bi=rcosθ\theta +irsinθ\theta

r=a2+b2=0+(8)2=8\sqrt{a^2+b^2}=\sqrt{0+(-8)^2}=8

θ=tan1(80)=π2=90°\theta=tan^-1(\frac{-8 }0)=-\fracπ2=-90^°

W=8cos(-90°)+i8sin(-90°)

By De Moivres theorem,

W1/n=r1/n[cos(2πk+θ)n+isin(2πk+θ)n]\frac{(2πk+\theta)}{n}+isin\frac{(2πk+\theta)}{n}]

Where k=0,1,2...,n-1

1st root ,take k=0

814[cos(22.5°)+isin(22.5°)]=1.5540.6436i8^{\frac 1 4}[cos(-22.5°)+isin(-22.5°)]=1.554-0.6436i

2nd root ,take k=1

8148^\frac1 4 [Cos(-22.5°+90°)+iSin(-22.5°+90°)]=0.6436+1.554i

3rd root ,take k=2

8148^\frac14[Cos(-22.5+180°)+iSin (-22.5°+180°)]=-1.554+0.6436i

4th root,take k=3

814^\frac14 [Cos(-22.5+270°)+iSin (-22.5°+270°)=-0.6436-1.554i

7.2

Solution

De Moivres theorem;

Cosnθ+iSinnθ=(cosθ+isinθ)nCosn\theta+iSin n\theta=(cos\theta+isin\theta)^n

Cos 4θ=Re(cosθ+iSinθ)4)4\theta=Re(cos\theta+iSin\theta)^4)

Cos4θ=Re(Cos4θ+4Cos3θ(isinθ)+6cos2θ(isinθ)2+4cosθ(isinθ)3+(isinθ)4)Cos4\theta=Re(Cos^4\theta+4Cos^3\theta(isin\theta)+6cos^2\theta(isin\theta)^2+4cos\theta(isin\theta)^3+(isin\theta)^4)

Answer;

Cos4θ=cos4θ6cos2θsin2θ+sin4θCos4\theta=cos^4\theta-6cos^2\theta sin^2\theta+sin^4\theta

sin5θ5\theta

By De Moivre's Theorem;

Cos5θ+isin5θ=(cosθ+isinθ)5Cos5\theta+isin5\theta=(cos\theta+isin\theta)^5

Cos5θCos5\theta +isin5θisin5\theta can now be expressed as;

Cos5θ+isin5θ=cos5θ+5cos4θisinθ+10cos3θi2sin2θ+10cos2θi3sin3θ+5cosθi4sin4θ+i5sin5θCos5\theta+isin5\theta=cos^5\theta+5cos^4\theta isin\theta+10cos^3\theta i^2sin^2\theta+10cos^2\theta i^3sin^3\theta+5cos\theta i^4sin^4\theta+i^5sin^5\theta

Group real parts and imaginary parts together;

Cos5θ+isin5θ=(cos5θ10cos3θsin2θ+5cosθsin4θ)+i(5cos4θsinθ10cos2θsin3θ+sin5θ)Cos5\theta+isin5\theta=(cos^5\theta-10cos^3\theta sin^2\theta+5cos\theta sin^4\theta)+i (5cos^4\theta sin\theta-10cos^2\theta sin^3\theta+sin^5\theta)

Equate the imaginary parts of both sides together;

isin5θ=i(5cos4θsinθ10cos2θsin3θ+sin5θ)isin5\theta=i(5cos^4\theta sin\theta-10cos^2\theta sin^3\theta+sin^5\theta)

Divide out i

Answer

Sin5θ=5cos4θsinθ10cos2θsin3θ+sin5θ)Sin5\theta=5cos^4\theta sin\theta-10cos^2\theta sin^3\theta+sin^5\theta)

7.3

Solution:

By De Moivre's Theorem;

zn+z-n=2cosnθ\theta

Take n=1

2cosθ\theta =z1+z-1

(2cosθ\theta )6=(z1+z-1)6

(2cosθ\theta)6 =z6+6z4+15z2+20+15z-2+6z-4+z-6

64cos6θ\theta =(z6+z-6)+6(z4+z-4)+15(z2+z-2)+20

64cos6θ=2cos6θ+12cos4θ+30cos2θ+2064cos^6\theta=2cos6\theta+12cos4\theta+30cos2\theta+20

Divide by 64;

Answer

Cos6θ=232cos6θ+316cos4θ+1532cos2θ+516Cos^6\theta=\frac 2{32}cos6\theta+\frac3{16}cos4\theta+\frac{15}{32}cos2\theta+\frac5{16}

7.4

Solution;

Find Cos3θCos^3\theta

(2cosθ\theta)3=(z1+z-1)3=z3+3z1+3z-1+z-3

8cos3θ\theta =(z3+z-3)+3(z1+z-1)

=2cos3θ+6cosθcos3\theta+6cos\theta

cos3θ=14cos3θ+34cosθ^3\theta=\frac14cos3\theta+\frac34cos\theta

Find sin4θ\theta

(2isinθ\theta )4=(z4-z-4)4=z4-4z4+6+4z-2+z-4

16sin4θ^4\theta =2cos4θ6cos2θ+62cos4\theta-6cos2\theta+6

Sin4θ=18cos4θ12cos2θ+38Sin^4\theta=\frac18cos4\theta-\frac12cos2\theta+\frac38

Therefore;

cos2θsin4θ=cos^2\theta sin^4\theta=(14cos3θ+38cosθ)(18cos4θ12cos2θ+38)\frac14cos3\theta+\frac38cos\theta)(\frac18cos4\theta-\frac12cos2\theta+\frac38)

Using the identity ;

CosAcosB=12\frac12 [Cos(A+B)+Cos(A-B)

Simplify.

Answer;

164(cos7θcos5θ3cos3θ+3cosθ)\frac1{64}(cos7\theta-cos5\theta-3cos3\theta+3cos\theta)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS