A=[cosθsinθ−sinθcosθ] The characteristic polynomial is
det(A−λI)=0
∣∣cosθ−λsinθ−sinθcosθ−λ∣∣=0
cos2θ−2λcosθ+λ2+sin2θ=0
λ2−2λcosθ+1=0
λ=cosθ±cos2θ−1
λ=cosθ±isinθ=e±iθ
λ1=eiθ=cosθ+isinθ
[−isinθsinθ−sinθ−isinθ][v1v2]=0
−isinθ[1i−i1][v1v2]=0
sinθ[10−i0][v1v2]=0
[v1v2]=[i1],sinθ=0
λ2=e−iθ=cosθ−isinθ
[isinθsinθ−sinθisinθ][v1v2]=0
isinθ[1−ii1][v1v2]=0
sinθ[10i0][v1v2]=0
[v1v2]=[−i1],sinθ=0
Tα1=[cosθsinθ−sinθcosθ][i1]=[icosθ−sinθisinθ+cosθ]
=(cosθ+isinθ)[i1]=eiθα1
Tα2=[cosθsinθ−sinθcosθ][−i1]=[−icosθ−sinθ−isinθ+cosθ]
=(cosθ−isinθ)[−i1]=e−iθα2
Therefore the following two matrices are similar over the field of complex numbers:
[cosθsinθ−sinθcosθ]and[eiθ00e−iθ]
Comments
Leave a comment