Let θ be a real number. Then check whether the matrices
cos θ − sin θ
sin θ cos θ
and
e
iθ −0
0 e
−iθ
are similar over the field of complex numbers.
"A=\\begin{bmatrix}\n \\cos \\theta & -\\sin \\theta \\\\\n \\sin \\theta & \\cos \\theta\n\\end{bmatrix}"
The characteristic polynomial is
"\\cos^2\\theta-2\\lambda \\cos\\theta+\\lambda^2+\\sin^2\\theta=0"
"\\lambda^2-2\\lambda \\cos\\theta+1=0"
"\\lambda=\\cos\\theta\\pm\\sqrt{\\cos^2\\theta-1}"
"\\lambda=\\cos\\theta\\pm i \\sin\\theta=e^{\\pm i\\theta}"
"\\lambda_1=e^{i \\theta}=\\cos\\theta+ i \\sin\\theta"
"-i\\sin\\theta\\begin{bmatrix}\n 1 & -i \\\\\n i & 1\n\\end{bmatrix}\\begin{bmatrix}\n v_1 \\\\\n v_2\n\\end{bmatrix}=0"
"\\sin\\theta\\begin{bmatrix}\n 1 & -i \\\\\n 0 & 0\n\\end{bmatrix}\\begin{bmatrix}\n v_1 \\\\\n v_2\n\\end{bmatrix}=0"
"\\begin{bmatrix}\n v_1 \\\\\n v_2\n\\end{bmatrix}=\\begin{bmatrix}\n i \\\\\n 1\n\\end{bmatrix}, \\sin \\theta\\not=0"
"\\lambda_2=e^{-i \\theta}=\\cos\\theta- i \\sin\\theta"
"i\\sin\\theta\\begin{bmatrix}\n 1 & i \\\\\n - i & 1\n\\end{bmatrix}\\begin{bmatrix}\n v_1 \\\\\n v_2\n\\end{bmatrix}=0"
"\\sin\\theta\\begin{bmatrix}\n 1 & i \\\\\n 0 & 0\n\\end{bmatrix}\\begin{bmatrix}\n v_1 \\\\\n v_2\n\\end{bmatrix}=0"
"\\begin{bmatrix}\n v_1 \\\\\n v_2\n\\end{bmatrix}=\\begin{bmatrix}\n - i \\\\\n 1\n\\end{bmatrix}, \\sin \\theta\\not=0"
"=( \\cos \\theta+i\\sin \\theta)\\begin{bmatrix}\n i\\\\\n 1\n\\end{bmatrix}=e^{i\\theta}\\alpha_1"
"=( \\cos \\theta-i\\sin \\theta)\\begin{bmatrix}\n -i\\\\\n 1\n\\end{bmatrix}=e^{-i\\theta}\\alpha_2"
Therefore the following two matrices are similar over the field of complex numbers:
Comments
Leave a comment