2.
( 15 + 7 j ) ( 3 − 2 j ) ( 4 + 6 j ) ( 1.5 + j 3 / 2 ) = 2 ( 45 + 14 + 7 j ) 12 + ( 18 + 6 3 ) j − 6 3 = ( 118 + 14 j ) ( [ 12 − 6 3 − ( 18 + 6 3 ) j ] ) [ ( 12 − 6 3 ) 2 + ( 18 + 6 3 ) 2 ] = \frac{(15+7j)(3-2j)}{(4+6j)(1.5+j\sqrt{3}/2)}=\frac{2(45+14+7j)}{12+(18+6\sqrt{3})j-6\sqrt{3}}=\frac{(118+14j)([12-6\sqrt{3}-(18+6\sqrt{3})j])}{[(12-6\sqrt{3})^2+(18+6\sqrt{3})^2]}= ( 4 + 6 j ) ( 1.5 + j 3 /2 ) ( 15 + 7 j ) ( 3 − 2 j ) = 12 + ( 18 + 6 3 ) j − 6 3 2 ( 45 + 14 + 7 j ) = [( 12 − 6 3 ) 2 + ( 18 + 6 3 ) 2 ] ( 118 + 14 j ) ([ 12 − 6 3 − ( 18 + 6 3 ) j ]) =
= 1416 − 708 3 + 252 + 84 3 + ( 168 − 84 3 − 2124 − 708 3 ) j 144 − 144 3 + 108 + 324 + 216 3 + 108 = =\frac{1416-708\sqrt{3}+252+84\sqrt{3}+(168-84\sqrt{3}-2124-708\sqrt{3})j}{144-144\sqrt{3}+108+324+216\sqrt{3}+108}= = 144 − 144 3 + 108 + 324 + 216 3 + 108 1416 − 708 3 + 252 + 84 3 + ( 168 − 84 3 − 2124 − 708 3 ) j =
= 1668 − 624 3 − ( 1956 + 792 3 ) j 684 + 72 3 = 139 − 52 3 57 + 6 3 − 163 + 66 3 57 + 6 3 j =\frac{1668-624\sqrt{3}-(1956+792\sqrt{3})j}{684+72\sqrt{3}}=\frac{139-52\sqrt{3}}{57+6\sqrt{3}}-\frac{163+66\sqrt{3}}{57+6\sqrt{3}}j = 684 + 72 3 1668 − 624 3 − ( 1956 + 792 3 ) j = 57 + 6 3 139 − 52 3 − 57 + 6 3 163 + 66 3 j
3.
∑ k = 3 ∞ 8 − k 4 k + 2 − 3 k + 3 6 k \displaystyle{\sum^{\infin}_{k=3}}\frac{8^{-k}4^{k+2}-3^{k+3}}{6^k} k = 3 ∑ ∞ 6 k 8 − k 4 k + 2 − 3 k + 3
lim k → ∞ ∣ a k + 1 a k ∣ = lim k → ∞ ∣ 8 − k − 1 4 k + 3 − 3 k + 4 6 k + 1 6 k 8 − k 4 k + 2 − 3 k + 3 ∣ = \displaystyle{\lim_{k\to \infin}}|\frac{a_{k+1}}{a_k}|=\displaystyle{\lim_{k\to \infin}}|\frac{8^{-k-1}4^{k+3}-3^{k+4}}{6^{k+1}}\frac{6^k}{8^{-k}4^{k+2}-3^{k+3}}|= k → ∞ lim ∣ a k a k + 1 ∣ = k → ∞ lim ∣ 6 k + 1 8 − k − 1 4 k + 3 − 3 k + 4 8 − k 4 k + 2 − 3 k + 3 6 k ∣ =
= lim k → ∞ ∣ 2 3 − k − 3 k + 4 6 ( 2 4 − k − 3 k + 3 ) ∣ = 3 6 = 1 2 < 1 =\displaystyle{\lim_{k\to \infin}}|\frac{2^{3-k}-3^{k+4}}{6(2^{4-k}-3^{k+3})}|=\frac{3}{6}=\frac{1}{2}<1 = k → ∞ lim ∣ 6 ( 2 4 − k − 3 k + 3 ) 2 3 − k − 3 k + 4 ∣ = 6 3 = 2 1 < 1
The series is convergent.
It can be represented as two geometric series:
∑ k = 3 ∞ 8 − k 4 k + 2 − 3 k + 3 6 k = ∑ k = 3 ∞ 16 1 2 k − ∑ k = 3 ∞ 27 2 k = \displaystyle{\sum^{\infin}_{k=3}}\frac{8^{-k}4^{k+2}-3^{k+3}}{6^k}=\displaystyle{\sum^{\infin}_{k=3}}\frac{16}{12^k}-\displaystyle{\sum^{\infin}_{k=3}}\frac{27}{2^k}= k = 3 ∑ ∞ 6 k 8 − k 4 k + 2 − 3 k + 3 = k = 3 ∑ ∞ 1 2 k 16 − k = 3 ∑ ∞ 2 k 27 =
= 16 1 2 3 ( 1 1 − 1 / 12 ) − 27 2 3 ( 1 1 − 1 / 2 ) = − 2669 396 = − 6.74 =\frac{16}{12^3}(\frac{1}{1-1/12})-\frac{27}{2^3}(\frac{1}{1-1/2})=-\frac{2669}{396}=-6.74 = 1 2 3 16 ( 1 − 1/12 1 ) − 2 3 27 ( 1 − 1/2 1 ) = − 396 2669 = − 6.74
1.
i)
∫ C 1 z 2 d z = ∫ 0 1 1 + i ( − 1 + ( 1 + i ) t ) 2 d t = − 1 − 1 + ( 1 + i ) t ∣ 0 1 = − 1 − 1 / i = − 1 + i \int_C\frac{1}{z^2}dz=\int^1_0\frac{1+i}{(-1+(1+i)t)^2}dt=-\frac{1}{-1+(1+i)t}|^1_0=-1-1/i=-1+i ∫ C z 2 1 d z = ∫ 0 1 ( − 1 + ( 1 + i ) t ) 2 1 + i d t = − − 1 + ( 1 + i ) t 1 ∣ 0 1 = − 1 − 1/ i = − 1 + i
ii)
∫ C 1 z 2 d z = ∫ π π / 2 1 e 2 i θ i e d θ = − e − i θ ∣ π π / 2 = − 1 + i \int_C\frac{1}{z^2}dz=\int^{\pi/2}_{\pi}\frac{1}{e^{2i\theta}}ie^{}d\theta=-e^{-i\theta}|^{\pi/2}_{\pi}=-1+i ∫ C z 2 1 d z = ∫ π π /2 e 2 i θ 1 i e d θ = − e − i θ ∣ π π /2 = − 1 + i
Comments