Given equation is-
(x3+3xy2)p+(y3+3x2y)q=(x+y)2z
x3+3xy2dx=y3+3x2ydy=z(x+y)2dz
dxdy=x3+3xy2y3+3x2y
This is a homogeneous differential equation.
Let xy=v,y=xv,dxdy=v+x(dxdv)
Then:
v+xdxdv=x3+3x3v2(xv)3+3x3v=1+3v2v3+3v
xdxdv=1+3v2v3+3v−v=1+3v24v3+2v
21∫v(2v2+1)1+3v2dv=∫xdx
v(2v2+1)1+3v2=vA+2v2+1Bv+C
A(2v2+1)+v(Bv+C)=1+3v2
2A+B=3
A=1
C=0
B=3−2A=1
v(2v2+1)1−3v2=v1+2v2+1v
∫2v2+1vdv=21∫2v2+1d(v2)dv=4ln(2v2+1)
2lnv−85ln(2v2+1)=lnx+lnc1
ln((2v2+1)5/8v1/2)=ln(c1x)
x(2(y/x)2+1)5/8(y/x)1/2=c1
6x2dx/x+dy/y+dz/z=−6y23(dx/x−dy/y+dz/z)=z(x+y)2dz
6x2+6y2dx/x+dy/y+dz/z−3(dx/x−dy/y+dz/z)=6(x+y)23dz/z
xdx+ydy+zdz−3(xdx−ydy+zdz)=3zdz
4ydy−2xdx=5zdz
4lny−2lnx=5lnz+lnc2
ln(x2y4)=ln(c2z5)
x2z5y4=c2
The general integral:
ϕ(x(2(y/x)2+1)5/8(y/x)1/2,x2z5y4)=0
Comments