Question #196227

solve (x^3+3xy^2)p+(y^3+3x^2y)q=(x+y)^2z


1
Expert's answer
2021-05-23T23:18:02-0400

Given equation is-

(x3+3xy2)p+(y3+3x2y)q=(x+y)2z(x^3+3xy^2)p+(y^3+3x^2y)q=(x+y)^2z


dxx3+3xy2=dyy3+3x2y=dzz(x+y)2\dfrac{dx}{x^3+3xy^2}=\dfrac{dy}{y^3+3x^2y}=\dfrac{dz}{z(x+y)^2}


dydx=y3+3x2yx3+3xy2\dfrac{dy}{dx}=\dfrac{y^3+3x^2y}{x^3+3xy^2}


This is a homogeneous differential equation.


Let yx=v,y=xv,dydx=v+x(dvdx)\dfrac{y}{x}=v, y=xv, \dfrac{dy}{dx}=v+x(\dfrac{dv}{dx})


Then:

v+xdvdx=(xv)3+3x3vx3+3x3v2=v3+3v1+3v2v+x\dfrac{dv}{dx}=\dfrac{(xv)^3+3x^3v}{x^3+3x^3v^2}=\dfrac{v^3+3v}{1+3v^2}


xdvdx=v3+3v1+3v2v=4v3+2v1+3v2x\dfrac{dv}{dx}=\dfrac{v^3+3v}{1+3v^2}-v=\dfrac{4v^3+2v}{1+3v^2}


121+3v2v(2v2+1)dv=dxx\dfrac{1}{2}\intop\dfrac{1+3v^2}{v(2v^2+1)}dv=\intop \dfrac{dx}{x}


1+3v2v(2v2+1)=Av+Bv+C2v2+1\dfrac{1+3v^2}{v(2v^2+1)}=\dfrac{A}{v}+\dfrac{Bv+C}{2v^2+1}


A(2v2+1)+v(Bv+C)=1+3v2A(2v^2+1)+v(Bv+C)=1+3v^2

2A+B=32A+B=3

A=1A=1

C=0C=0

B=32A=1B=3-2A=1


13v2v(2v2+1)=1v+v2v2+1\dfrac{1-3v^2}{v(2v^2+1)}=\dfrac{1}{v}+\dfrac{v}{2v^2+1}


v2v2+1dv=12d(v2)2v2+1dv=ln(2v2+1)4\intop\dfrac{v}{2v^2+1}dv=\dfrac{1}{2}\intop\dfrac{d(v^2)}{2v^2+1}dv=\dfrac{ln(2v^2+1)}{4}


lnv25ln(2v2+1)8=lnx+lnc1\dfrac{lnv}{2}-\dfrac{5ln(2v^2+1)}{8}=lnx+lnc_1


ln(v1/2(2v2+1)5/8)=ln(c1x)ln(\dfrac{v^{1/2}}{(2v^2+1)^{5/8}})=ln(c_1x)


(y/x)1/2x(2(y/x)2+1)5/8=c1\dfrac{(y/x)^{1/2}}{x(2(y/x)^2+1)^{5/8}}=c_1



dx/x+dy/y+dz/z6x2=3(dx/xdy/y+dz/z)6y2=dzz(x+y)2\dfrac{dx/x+dy/y+dz/z}{6x^2}=-\dfrac{3(dx/x-dy/y+dz/z)}{6y^2}=\dfrac{dz}{z(x+y)^2}


dx/x+dy/y+dz/z3(dx/xdy/y+dz/z)6x2+6y2=3dz/z6(x+y)2\dfrac{dx/x+dy/y+dz/z-3(dx/x-dy/y+dz/z)}{6x^2+6y^2}=\dfrac{3dz/z}{6(x+y)^2}



dxx+dyy+dzz3(dxxdyy+dzz)=3dzz\dfrac{dx}{x}+\dfrac{dy}{y}+\dfrac{dz}{z}-3(\dfrac{dx}{x}-\dfrac{dy}{y}+\dfrac{dz}{z})=3\dfrac{dz}{z}


4dyy2dxx=5dzz4\dfrac{dy}{y}-2\dfrac{dx}{x}=5\dfrac{dz}{z}


4lny2lnx=5lnz+lnc24lny-2lnx=5lnz+lnc_2


ln(y4x2)=ln(c2z5)ln(\dfrac{y^4}{x^2})=ln(c_2z^5)


y4x2z5=c2\dfrac{y^4}{x^2z^5}=c_2


The general integral:


ϕ((y/x)1/2x(2(y/x)2+1)5/8,y4x2z5)=0\phi(\dfrac{(y/x)^{1/2}}{x(2(y/x)^2+1)^{5/8}}, \dfrac{y^4}{x^2z^5})=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS