Question #190658

DX/x+y=dy/x+y=DX/-(x+y+2z)


1
Expert's answer
2021-05-11T07:22:29-0400

Given, dxx+y=dyx+y=dx(x+y+2z)\dfrac{dx}{x+y}=\dfrac{dy}{x+y}=\dfrac{dx}{-(x+y+2z)}


Taking first two terms-


dxx+y=dyx+y\dfrac{dx}{x+y}=\dfrac{dy}{x+y}


dx=dy\Rightarrow dx=dy


Integrate-

x=y+c1x=y+c_1


c1=xy   (1)c_1=x-y~~~-(1)


Taking first and last term we get-


dxx+y=dx(x+y+2z)x+y=xy2zz=(x+y)\dfrac{dx}{x+y}=\dfrac{dx}{-(x+y+2z)} \\[9pt] \Rightarrow x+y=-x-y-2z \\[9pt] \Rightarrow z=-(x+y)


Now Taking second and third term-


dyx+y=dz(x+y+2(xy)dyx+y=dxx+ydy=dx\dfrac{dy}{x+y}=\dfrac{dz}{-(x+y+2(-x-y)} \\[9pt] \Rightarrow \dfrac{dy}{x+y}=\dfrac{dx}{x+y} \\[9pt] \Rightarrow dy=dx

Integrate-


y=x+c2c2=yx     (2)y=x+c_2\\[9pt] c_2=y-x~~~~~-(2)


The solution is-

ϕ(c1,c2)=0ϕ(xy,yx)=0\phi(c_1,c_2)=0 \\[9pt] \phi(x-y,y-x)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS