Given, x+ydx=x+ydy=−(x+y+2z)dx
Taking first two terms-
x+ydx=x+ydy
⇒dx=dy
Integrate-
x=y+c1
c1=x−y −(1)
Taking first and last term we get-
x+ydx=−(x+y+2z)dx⇒x+y=−x−y−2z⇒z=−(x+y)
Now Taking second and third term-
x+ydy=−(x+y+2(−x−y)dz⇒x+ydy=x+ydx⇒dy=dx
Integrate-
y=x+c2c2=y−x −(2)
The solution is-
ϕ(c1,c2)=0ϕ(x−y,y−x)=0
Comments