Question #190717

The inverse point of 1+i with respect to the circle |z-1|=2 is


1
Expert's answer
2021-05-11T15:15:34-0400

Formula for symmetric point with respect to the circle-

zzo=r|z-z_o|=r


So, z=r2zˉzo+zo         (1)z'=\dfrac{r^2}{\bar{z}-z_o}+z_o~~~~~~~~~-(1)


Given circle is-


z1=2|z-1|=2  


 So, zo=1,r=2 and point z=1+i\text{ So, } z_o=1,r=2 \text{ and point }z=1+i


Subsititue above values in (1)-


z=221+i1=41i1=4i=4iz'=\dfrac{2^2}{\overline{1+i}-1}=\dfrac{4}{1-i-1}=\dfrac{4}{-i}=4i


Hence The inverse is 4i.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS