The inverse point of 1+i with respect to the circle |z-1|=2 is
Formula for symmetric point with respect to the circle-
"|z-z_o|=r"
So, "z'=\\dfrac{r^2}{\\bar{z}-z_o}+z_o~~~~~~~~~-(1)"
Given circle is-
"|z-1|=2"
"\\text{ So, } z_o=1,r=2 \\text{ and point }z=1+i"
Subsititue above values in (1)-
"z'=\\dfrac{2^2}{\\overline{1+i}-1}=\\dfrac{4}{1-i-1}=\\dfrac{4}{-i}=4i"
Hence The inverse is 4i.
Comments
Leave a comment