Question #196234

Use the method of contour integration, evaluate the integral ∫02πcos3θ/5−3cosθdθ.


1
Expert's answer
2021-05-23T23:49:01-0400

Given integral-


I=02π(15cos3θ3cosθ)dθI=\int_0^{2\pi} (\dfrac{1}{5}cos3\theta -3cos\theta)d\theta


As we know, eiθ=cosθ+isinθe^{i\theta}=cos\theta+isin\theta


and eiθ=cosθisinθe^{-i\theta}=cos\theta-isin\theta


So cosθ=eiθ+eiθ2sinθ=eiθeiθ2cos\theta=\dfrac{e^{i\theta}+e^{-i\theta}}{2}\\[9pt]sin\theta=\dfrac{e^{i\theta}-e^{-i\theta}}{2}


Let z=eiθdz=ieiθdθz=e^{i\theta}\Rightarrow dz=ie^{i\theta}d\theta


So Our integral becomes-


I=02π[110(ei3θ+e3iθ)(eiθeiθ2)]dθI=\int_0^{2\pi}[ \dfrac{1}{10}(e^{i3\theta}+e^{-3i\theta})-(\dfrac{e^{i\theta}-e^{-i\theta}}{2})]d\theta


=01[110(z3+z3)12(zz1)]dz=110(z442z2)12(z22lnz)01=110(142)12(12ln1)=74014=71040=1740=\int_0^1[\dfrac{1}{10}(z^3+z^{-3})-\dfrac{1}{2}(z-z^{-1})]dz\\[9pt]=\dfrac{1}{10}(\dfrac{z^4}{4}-\dfrac{2}{z^2})-\dfrac{1}{2}(\dfrac{z^2}{2}-lnz)|_0^1\\[9pt]=\dfrac{1}{10}(\dfrac{1}{4}-2)-\dfrac{1}{2}(\dfrac{1}{2}-ln1)\\[9pt]=\dfrac{-7}{40}-\dfrac{1}{4}\\[9pt]=\dfrac{-7-10}{40}=\dfrac{-17}{40}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS