Use the method of contour integration, evaluate the integral ∫02πcos3θ/5−3cosθdθ.
Given integral-
"I=\\int_0^{2\\pi} (\\dfrac{1}{5}cos3\\theta -3cos\\theta)d\\theta"
As we know, "e^{i\\theta}=cos\\theta+isin\\theta"
and "e^{-i\\theta}=cos\\theta-isin\\theta"
So "cos\\theta=\\dfrac{e^{i\\theta}+e^{-i\\theta}}{2}\\\\[9pt]sin\\theta=\\dfrac{e^{i\\theta}-e^{-i\\theta}}{2}"
Let "z=e^{i\\theta}\\Rightarrow dz=ie^{i\\theta}d\\theta"
So Our integral becomes-
"I=\\int_0^{2\\pi}[ \\dfrac{1}{10}(e^{i3\\theta}+e^{-3i\\theta})-(\\dfrac{e^{i\\theta}-e^{-i\\theta}}{2})]d\\theta"
"=\\int_0^1[\\dfrac{1}{10}(z^3+z^{-3})-\\dfrac{1}{2}(z-z^{-1})]dz\\\\[9pt]=\\dfrac{1}{10}(\\dfrac{z^4}{4}-\\dfrac{2}{z^2})-\\dfrac{1}{2}(\\dfrac{z^2}{2}-lnz)|_0^1\\\\[9pt]=\\dfrac{1}{10}(\\dfrac{1}{4}-2)-\\dfrac{1}{2}(\\dfrac{1}{2}-ln1)\\\\[9pt]=\\dfrac{-7}{40}-\\dfrac{1}{4}\\\\[9pt]=\\dfrac{-7-10}{40}=\\dfrac{-17}{40}"
Comments
Leave a comment