Given integral-
I=∫02π(51cos3θ−3cosθ)dθ
As we know, eiθ=cosθ+isinθ
and e−iθ=cosθ−isinθ
So cosθ=2eiθ+e−iθsinθ=2eiθ−e−iθ
Let z=eiθ⇒dz=ieiθdθ
So Our integral becomes-
I=∫02π[101(ei3θ+e−3iθ)−(2eiθ−e−iθ)]dθ
=∫01[101(z3+z−3)−21(z−z−1)]dz=101(4z4−z22)−21(2z2−lnz)∣01=101(41−2)−21(21−ln1)=40−7−41=40−7−10=40−17
Comments