z2−z−2=(z−2)(z+1)
Poles:
z0=2,z0=−1
res f(2)=z→2lim(f(z)(z−2))=z→2lim(z+12z+1)=5/3
res f(−1)=z→−1lim(f(z)(z+1))=z→−1lim(z−22z+1)=1/3
f(z0)=2πi1∮Cz−z0f(z)dz , z0∈D
(z−2)(z+1)1=z−2A+z+1B
A(z+1)+B(z−2)=1
A+B=0
A−2B=1
B=−1/3,A=1/3
∮Cz−z0f(z)dz=32πi∮z−22z+1dz−32πi∮z+12z+1dz=32πi(2z+1)∣z=2−32πi(2z+1)∣z=−1=
=310πi+32πi=4πi
Comments