Question #203588

1. Determine the poles and residue at each poles of

f(z)=2z+1/z²-z-2 over C=|z|=5/2 Hence Evaluate

∮c 2z+1/z²-z-2 dz over C=|z|=5/2


1
Expert's answer
2021-06-08T13:20:17-0400

z2z2=(z2)(z+1)z²-z-2=(z-2)(z+1)


Poles:

z0=2,z0=1z_0=2,z_0=-1


res f(2)=limz2(f(z)(z2))=limz2(2z+1z+1)=5/3res\ f(2)=\displaystyle{\lim_{z\to 2}}(f(z)(z-2))=\displaystyle{\lim_{z\to 2}}(\frac{2z+1}{z+1})=5/3


res f(1)=limz1(f(z)(z+1))=limz1(2z+1z2)=1/3res\ f(-1)=\displaystyle{\lim_{z\to -1}}(f(z)(z+1))=\displaystyle{\lim_{z\to -1}}(\frac{2z+1}{z-2})=1/3


f(z0)=12πiCf(z)zz0dzf(z_0)=\frac{1}{2\pi i}\oint_C\frac{f(z)}{z-z_0}dz , z0Dz_0\isin D


1(z2)(z+1)=Az2+Bz+1\frac{1}{(z-2)(z+1)}=\frac{A}{z-2}+\frac{B}{z+1}


A(z+1)+B(z2)=1A(z+1)+B(z-2)=1

A+B=0A+B=0

A2B=1A-2B=1

B=1/3,A=1/3B=-1/3,A=1/3


Cf(z)zz0dz=2πi32z+1z2dz2πi32z+1z+1dz=2πi3(2z+1)z=22πi3(2z+1)z=1=\oint_C\frac{f(z)}{z-z_0}dz=\frac{2\pi i}{3}\oint\frac{2z+1}{z-2}dz-\frac{2\pi i}{3}\oint\frac{2z+1}{z+1}dz=\frac{2\pi i}{3}(2z+1)|_{z=2}-\frac{2\pi i}{3}(2z+1)|_{z=-1}=


=10πi3+2πi3=4πi=\frac{10\pi i}{3}+\frac{2\pi i}{3}=4\pi i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS