Determine for which value (s) of λ the real part of z = 1+λi/1−λi equals zero
z=1+λi1−λiz=(1+λi)(1+λi)(1−λi)(1+λi)z=1+2λi−λ21+λ2z=1−λ21+λ2+2λi1+λ2R(z)=1−λ21+λ2=0∴1−λ2=0λ2=1λ=±1λ=±1z=\dfrac{1+\lambda {i}}{1-\lambda{i}}\\ z=\dfrac{(1+\lambda{i})(1+\lambda{i})}{(1-\lambda{i})(1+\lambda{i})}\\ z=\dfrac{1+2\lambda{i}-\lambda^2}{1+\lambda^2}\\ z=\dfrac{1-\lambda^2}{1+\lambda^2}+\dfrac{2\lambda{i}}{1+\lambda^2}\\ \reals(z)=\dfrac{1-\lambda^2}{1+\lambda^2}=0\\ \therefore 1-\lambda^2=0\\ \lambda^2=1\\ \lambda=\pm \sqrt{1}\\ \lambda=\pm1z=1−λi1+λiz=(1−λi)(1+λi)(1+λi)(1+λi)z=1+λ21+2λi−λ2z=1+λ21−λ2+1+λ22λiR(z)=1+λ21−λ2=0∴1−λ2=0λ2=1λ=±1λ=±1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments