(4.1) Determine the complex numbers i2666 and i145.
(4.2) Let z1 = (6) −i −1+i and z2 = 1+i 1−i . Express z1z3/z2 , z1z2/z3 , and z1/z3z2 in both polar and standard forms.
(4.3) Additional Exercises for practice: Express z1 = −i, z2 = −1 − i √ 3, and z3= − √ 3 + i in polar form and use your results to find z43 /z21 z-12. Find the roots of the polynomials below.
(a) P(z) = z2 + a for a > 0
(b) P(z) = z3 − z2 + z − 1.
(c) Find the roots of z (4) 3 − 1
(d) Find in standard forms, the cube roots of 8 − 8i
(e) Let w = 1 + i. Solve for the complex number z from the equation z4 = w3 . (4.4) Find the value(s) for λ so that α = i is a root of P(z) = z2 + λz − 6.
(4.1)
"i^{145}=(i^4)^{36}i=i"
(4.2)
"=\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}=\\dfrac{\\sqrt{2}}{2}(\\cos\\dfrac{3\\pi}{4}+i\\sin\\dfrac{3\\pi}{4})=-\\dfrac{1}{2}+i(\\dfrac{1}{2})"
"=e^{i{\\pi \\over 2}}=\\cos\\dfrac{\\pi}{2}+i\\sin\\dfrac{\\pi}{2}=i"
"\\dfrac{z_1}{z_2}=\\dfrac{\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}}{e^{i{\\pi \\over 2}}}=\\dfrac{\\sqrt{2}}{2}e^{i{\\pi \\over 4}}"
"=\\dfrac{\\sqrt{2}}{2}(\\cos\\dfrac{\\pi}{4}+i\\sin\\dfrac{\\pi}{4})=\\dfrac{1}{2}+i(\\dfrac{1}{2})"
"\\dfrac{z_2}{z_1}=\\dfrac{e^{i{\\pi \\over 2}}}{\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}}=\\sqrt{2}e^{-i{\\pi \\over 4}}"
"=\\sqrt{2}(\\cos(-\\dfrac{\\pi}{4})+i\\sin(-\\dfrac{\\pi}{4}))=1-i"
(4.3)
"z_2=-1-i\\sqrt{3}=2(\\cos(-\\dfrac{2\\pi}{3})+i\\sin(-\\dfrac{2\\pi}{3}))"
"z_3=-\\sqrt{3}+i=2(\\cos(\\dfrac{5\\pi}{6})+i\\sin(\\dfrac{5\\pi}{6}))"
"(z_3)^4=16(\\cos(\\dfrac{10\\pi}{3})+i\\sin(\\dfrac{10\\pi}{3}))"
"(z_1)^2=\\cos(-\\pi)+i\\sin(-\\pi))"
"(z_2)^{-1}=\\dfrac{1}{2}(\\cos(\\dfrac{2\\pi}{3})+i\\sin(\\dfrac{2\\pi}{3}))"
"\\dfrac{(z_3)^4}{(z_1)^2}\\cdot(z_2)^{-1}=8(\\cos(5\\pi)+i\\sin(5\\pi))=-8"
(a) "P(z)=z^2+a, a>0"
(b) "P(z)=z^3-z^2+z-1"
"z^2(z-1)+(z-1)=0"
"z_1=1, z_2=-i, z_3=i"
(c) "z^3-1=0"
"z_1=1, z_{2,3}=\\dfrac{-1\\pm i\\sqrt{3}}{2}"
"z_1=1, z_2=-\\dfrac{1}{2}-i\\dfrac{\\sqrt{3}}{2}, z_3=-\\dfrac{1}{2}+i\\dfrac{\\sqrt{3}}{2}"
(d)
"k=0: 2^{7\/6}(\\cos(-\\dfrac{\\pi}{12})+i\\sin(-\\dfrac{\\pi}{12}))"
"k=1: 2^{7\/6}(\\cos(\\dfrac{7\\pi}{12})+i\\sin(\\dfrac{7\\pi}{12}))"
"k=2: 2^{7\/6}(\\cos(\\dfrac{5\\pi}{4})+i\\sin(\\dfrac{5\\pi}{4}))=-2^{2\/3}-i(2^{2\/3})"
(e)
"w^3=2^{3\/2}(\\cos(\\dfrac{3\\pi}{4})+i\\sin(\\dfrac{3\\pi}{4}))"
"z^4=w^3"
"k=1: 2^{3\/8}(\\cos(\\dfrac{11\\pi}{16})+i\\sin(\\dfrac{11\\pi}{16}))"
"k=2: 2^{3\/8}(\\cos(\\dfrac{19\\pi}{16})+i\\sin(\\dfrac{19\\pi}{16}))"
"k=3: 2^{3\/8}(\\cos(\\dfrac{27\\pi}{16})+i\\sin(\\dfrac{27\\pi}{16}))"
(4.4)
"z=i"
"\\lambda=-7i"
Comments
Leave a comment