Given equation is z4+4=0 
z4=−4 
since, eiπ=−1 and let z=reiθ 
Then,  (reiθ)4=4eiπ  
r4ei4θ=4eiπ 
solving it, r4=4⟹r=2 
4θ=π+2nπ⟹θ=4π+42nπ  where n=0,1,2,3
So, roots of the equation will be,
z=2ei(4π),2ei(4π+2π),2ei(4π+π),2ei(4π+23π)
z=2ei(4π),2ei(43π),2ei(45π),2ei(47π) 
Since, eiθ=cosθ+isinθ 
z1=2ei(4π)=2(cos4π+isin4π)=2(21+i21)=1+i 
z2=2ei(43π)=2(cos43π+isin43π)=2(−21+i21)=−1+i 
z3=2ei(45π)=2(cos45π+isin45π)=2(−21−i21)=−1−i 
z4=2ei(47π)=2(cos47π+isin47π)=2(21−i21)=1−i 
For z4−4=0⟹(z2−2)(z2+2)=0 
z2−2=0⟹z=±2 
z2+2=0⟹z2=−2⟹z=±2i 
Roots are, z=2,−2,2i,−2i 
For z8−16=0⟹(z4−4)(z4+4)=0 
roots for both are obtained above, so the roots will be,
z=−2,2,−2i,2i,1+i,−1+i,−1−i,1−i 
For z8+16=0 
 z8=−16 
(reiθ)8=(16eiπ) 
Solving it, r=(16)1/8⟹r=2 
8θ=π+2nπ⟹θ=8π+82nπ  where =0,1,2,3,4,5,6,7
z1=2ei8π=2(cos8π+isin8π) 
z2=2ei83π=2(cos83π+isin83π)
z3=2ei85π=2(cos85π+isin85π)  
z4=2ei87π=2(cos87π+isin87π) 
z5=2ei89π=2(cos89π+isin89π) 
z6=2ei811π=2(cos811π+isin811π) 
z7=2ei813π=2(cos813π+isin813π) 
z8=2ei815π=2(cos815π+isin815π) 
                             
Comments