Given equation is z 4 + 4 = 0 z^4 + 4 = 0 z 4 + 4 = 0
z 4 = − 4 z^4 = -4 z 4 = − 4
since, e i π = − 1 e^{i\pi} = -1 e iπ = − 1 and let z = r e i θ z = re^{i\theta} z = r e i θ
Then, ( r e i θ ) 4 = 4 e i π (re^{i\theta})^4 = 4e^{i\pi} ( r e i θ ) 4 = 4 e iπ
r 4 e i 4 θ = 4 e i π r^4 e^{i4\theta}= 4e^{i\pi} r 4 e i 4 θ = 4 e iπ
solving it, r 4 = 4 ⟹ r = 2 r^4 = 4 \implies r=\sqrt{2} r 4 = 4 ⟹ r = 2
4 θ = π + 2 n π ⟹ θ = π 4 + 2 n π 4 4\theta = \pi + 2n\pi \implies \theta = \frac{\pi}{4} + \frac{2n\pi}{4} 4 θ = π + 2 nπ ⟹ θ = 4 π + 4 2 nπ where n=0,1,2,3
So, roots of the equation will be,
z = 2 e i ( π 4 ) , 2 e i ( π 4 + π 2 ) , 2 e i ( π 4 + π ) , 2 e i ( π 4 + 3 π 2 ) z = \sqrt{2}e^{i(\frac{\pi}{4} )}, \sqrt{2}e^{i(\frac{\pi}{4} + \frac{\pi}{2})},\sqrt{2}e^{i(\frac{\pi}{4} + {\pi})},\sqrt{2}e^{i(\frac{\pi}{4} + \frac{3\pi}{2})} z = 2 e i ( 4 π ) , 2 e i ( 4 π + 2 π ) , 2 e i ( 4 π + π ) , 2 e i ( 4 π + 2 3 π )
z = 2 e i ( π 4 ) , 2 e i ( 3 π 4 ) , 2 e i ( 5 π 4 ) , 2 e i ( 7 π 4 ) z = \sqrt{2} e^{i(\frac{\pi}{4} )},\sqrt{2}e^{i(\frac{3\pi}{4} )},\sqrt{2}e^{i(\frac{5\pi}{4})},\sqrt{2}e^{i(\frac{7\pi}{4} )} z = 2 e i ( 4 π ) , 2 e i ( 4 3 π ) , 2 e i ( 4 5 π ) , 2 e i ( 4 7 π )
Since, e i θ = c o s θ + i s i n θ e^{i\theta} = cos\theta + isin\theta e i θ = cos θ + i s in θ
z 1 = 2 e i ( π 4 ) = 2 ( c o s π 4 + i s i n π 4 ) = 2 ( 1 2 + i 1 2 ) = 1 + i z_1 =\sqrt{2} e^{i(\frac{\pi}{4} )} = \sqrt{2}(cos\frac{\pi}{4} + isin\frac{\pi}{4}) = \sqrt{2}(\frac{1}{\sqrt{2} } +i\frac{1}{\sqrt{2}}) = 1+i z 1 = 2 e i ( 4 π ) = 2 ( cos 4 π + i s in 4 π ) = 2 ( 2 1 + i 2 1 ) = 1 + i
z 2 = 2 e i ( 3 π 4 ) = 2 ( c o s 3 π 4 + i s i n 3 π 4 ) = 2 ( − 1 2 + i 1 2 ) = − 1 + i z_2 =\sqrt{2} e^{i(\frac{3\pi}{4} )} = \sqrt{2}(cos\frac{3\pi}{4} + isin\frac{3\pi}{4}) = \sqrt{2}(-\frac{1}{\sqrt{2} } +i\frac{1}{\sqrt{2}}) = -1+i z 2 = 2 e i ( 4 3 π ) = 2 ( cos 4 3 π + i s in 4 3 π ) = 2 ( − 2 1 + i 2 1 ) = − 1 + i
z 3 = 2 e i ( 5 π 4 ) = 2 ( c o s 5 π 4 + i s i n 5 π 4 ) = 2 ( − 1 2 − i 1 2 ) = − 1 − i z_3 =\sqrt{2} e^{i(\frac{5\pi}{4} )} = \sqrt{2}(cos\frac{5\pi}{4} + isin\frac{5\pi}{4}) = \sqrt{2}(-\frac{1}{\sqrt{2} } -i\frac{1}{\sqrt{2}}) = -1-i z 3 = 2 e i ( 4 5 π ) = 2 ( cos 4 5 π + i s in 4 5 π ) = 2 ( − 2 1 − i 2 1 ) = − 1 − i
z 4 = 2 e i ( 7 π 4 ) = 2 ( c o s 7 π 4 + i s i n 7 π 4 ) = 2 ( 1 2 − i 1 2 ) = 1 − i z_4 =\sqrt{2} e^{i(\frac{7\pi}{4} )} = \sqrt{2}(cos\frac{7\pi}{4} + isin\frac{7\pi}{4}) = \sqrt{2}(\frac{1}{\sqrt{2} } -i\frac{1}{\sqrt{2}}) = 1-i z 4 = 2 e i ( 4 7 π ) = 2 ( cos 4 7 π + i s in 4 7 π ) = 2 ( 2 1 − i 2 1 ) = 1 − i
For z 4 − 4 = 0 ⟹ ( z 2 − 2 ) ( z 2 + 2 ) = 0 z^4-4 = 0 \implies (z^2-2)(z^2+2)=0 z 4 − 4 = 0 ⟹ ( z 2 − 2 ) ( z 2 + 2 ) = 0
z 2 − 2 = 0 ⟹ z = ± 2 z^2-2=0 \implies z = \pm\sqrt{2} z 2 − 2 = 0 ⟹ z = ± 2
z 2 + 2 = 0 ⟹ z 2 = − 2 ⟹ z = ± 2 i z^2+2=0 \implies z^2 = - 2 \implies z=\pm\sqrt{2}i z 2 + 2 = 0 ⟹ z 2 = − 2 ⟹ z = ± 2 i
Roots are, z = 2 , − 2 , 2 i , − 2 i z = \sqrt{2},-\sqrt{2},\sqrt{2}i,-\sqrt{2}i z = 2 , − 2 , 2 i , − 2 i
For z 8 − 16 = 0 ⟹ ( z 4 − 4 ) ( z 4 + 4 ) = 0 z^8 - 16 = 0 \implies (z^4-4)(z^4+4) = 0 z 8 − 16 = 0 ⟹ ( z 4 − 4 ) ( z 4 + 4 ) = 0
roots for both are obtained above, so the roots will be,
z = − 2 , 2 , − 2 i , 2 i , 1 + i , − 1 + i , − 1 − i , 1 − i z = -\sqrt{2},\sqrt{2},-\sqrt{2}i,\sqrt{2}i,1+i,-1+i,-1-i,1-i z = − 2 , 2 , − 2 i , 2 i , 1 + i , − 1 + i , − 1 − i , 1 − i
For z 8 + 16 = 0 z^8 + 16 = 0 z 8 + 16 = 0
z 8 = − 16 z^8 = -16 z 8 = − 16
( r e i θ ) 8 = ( 16 e i π ) (re^{i\theta})^8 = (16e^{i\pi}) ( r e i θ ) 8 = ( 16 e iπ )
Solving it, r = ( 16 ) 1 / 8 ⟹ r = 2 r = (16)^{1/8} \implies r=\sqrt{2} r = ( 16 ) 1/8 ⟹ r = 2
8 θ = π + 2 n π ⟹ θ = π 8 + 2 n π 8 8\theta = \pi + 2n\pi \implies \theta = \frac{\pi}{8} + \frac{2n\pi}{8 } 8 θ = π + 2 nπ ⟹ θ = 8 π + 8 2 nπ where =0,1,2,3,4,5,6,7
z 1 = 2 e i π 8 = 2 ( c o s π 8 + i s i n π 8 ) z_1 = \sqrt{2}e^{i\frac{\pi}{8}} = \sqrt{2}(cos\frac{\pi}{8}+isin\frac{\pi}{8}) z 1 = 2 e i 8 π = 2 ( cos 8 π + i s in 8 π )
z 2 = 2 e i 3 π 8 = 2 ( c o s 3 π 8 + i s i n 3 π 8 ) z_2 = \sqrt{2}e^{i\frac{3\pi}{8}} = \sqrt{2}(cos\frac{3\pi}{8}+isin\frac{3\pi}{8}) z 2 = 2 e i 8 3 π = 2 ( cos 8 3 π + i s in 8 3 π )
z 3 = 2 e i 5 π 8 = 2 ( c o s 5 π 8 + i s i n 5 π 8 ) z_3 = \sqrt{2}e^{i\frac{5\pi}{8}} = \sqrt{2}(cos\frac{5\pi}{8}+isin\frac{5\pi}{8}) z 3 = 2 e i 8 5 π = 2 ( cos 8 5 π + i s in 8 5 π )
z 4 = 2 e i 7 π 8 = 2 ( c o s 7 π 8 + i s i n 7 π 8 ) z_4= \sqrt{2}e^{i\frac{7\pi}{8}} = \sqrt{2}(cos\frac{7\pi}{8}+isin\frac{7\pi}{8}) z 4 = 2 e i 8 7 π = 2 ( cos 8 7 π + i s in 8 7 π )
z 5 = 2 e i 9 π 8 = 2 ( c o s 9 π 8 + i s i n 9 π 8 ) z_5 = \sqrt{2}e^{i\frac{9\pi}{8}} = \sqrt{2}(cos\frac{9\pi}{8}+isin\frac{9\pi}{8}) z 5 = 2 e i 8 9 π = 2 ( cos 8 9 π + i s in 8 9 π )
z 6 = 2 e i 11 π 8 = 2 ( c o s 11 π 8 + i s i n 11 π 8 ) z_6 = \sqrt{2}e^{i\frac{11\pi}{8}} = \sqrt{2}(cos\frac{11\pi}{8}+isin\frac{11\pi}{8}) z 6 = 2 e i 8 11 π = 2 ( cos 8 11 π + i s in 8 11 π )
z 7 = 2 e i 13 π 8 = 2 ( c o s 13 π 8 + i s i n 13 π 8 ) z_7 = \sqrt{2}e^{i\frac{13\pi}{8}} = \sqrt{2}(cos\frac{13\pi}{8}+isin\frac{13\pi}{8}) z 7 = 2 e i 8 13 π = 2 ( cos 8 13 π + i s in 8 13 π )
z 8 = 2 e i 15 π 8 = 2 ( c o s 15 π 8 + i s i n 15 π 8 ) z_8 = \sqrt{2}e^{i\frac{15\pi}{8}} = \sqrt{2}(cos\frac{15\pi}{8}+isin\frac{15\pi}{8}) z 8 = 2 e i 8 15 π = 2 ( cos 8 15 π + i s in 8 15 π )
Comments