Expand f(z)=𝑧+3/𝑧(𝑧2−𝑧−2) in power of z where
a) |𝑧|<1
b) 1<|𝑧|<2
c) |𝑧|>2
"f=z+\\dfrac{3}{z(z^2-z-2)}=z+\\dfrac{3}{z(z+1)(z-2)}=z+\\dfrac{1}{z}\\left(\\dfrac{1}{z-2}-\\dfrac{1}{z+1}\\right)\\\\\\implies z+\\dfrac{1}{z(z-2)}-\\dfrac{1}{z(z+1)}=z+\\dfrac{1}{2(z-2)}-\\dfrac{1}{2z}-\\dfrac{1}{z}+\\dfrac{1}{z+1}\\\\=z-\\dfrac{3}{2}z^{-1}+\\dfrac{1}{4(\\frac{z}{2}-1)}+\\dfrac{1}{z+1}"
We remind the formula: "a+ar+...+ar^n=a\\left(\\frac{1-r^{n+1}}{1-r}\\right)", "|r|<1."
We take the limit and get: "a+ar+...+ar^n+...=\\frac{a}{1-r}".
a). For "|z|<1" we use the formula and get:
"\\implies z-\\dfrac{3}{2}z^{-1}+\\dfrac{1}{4(\\frac{z}{2}-1)}+\\dfrac{1}{z+1}\\\\=z-\\dfrac{3}{2}z^{-1}-\\dfrac14\\left(1+\\dfrac{z}{2}+\\dfrac{z^2}{2^2}+\\dfrac{z^3}{2^3}...\\right)+\\left(1-z+z^2-z^3+z^4+...\\right)"
b). We point out that "\\frac{1}{2}<\\frac{1}{|z|}<1". We rewrite the equality as:
"\\implies z-\\dfrac{3}{2}z^{-1}-\\dfrac{1}{4(1-\\frac{z}2)}+\\dfrac{1}{z(1+\\frac{1}{z})}\\\\=z-\\dfrac{3}{2}z^{-1}-\\dfrac{1}{4}\\left(1-\\dfrac{z}{2}+\\dfrac{z^2}4-...\\right)+\\dfrac{1}{z}\\left(1-\\dfrac{1}{z}+\\dfrac{1}{z^2}+...\\right)"
c). We have: "\\frac{1}{2}>\\frac{1}{|z|}". Thus, we get:
"\\implies z-\\dfrac{3}{2}z^{-1}+\\dfrac{1}{2(1-\\frac{2}{z})}+\\dfrac{1}{z(1+\\frac{1}{z})}\\\\=z-\\dfrac{3}{2}z^{-1}+\\dfrac12\\left(1-\\dfrac{2}{z}+\\dfrac{4}{z^2}+...\\right)+\\dfrac{1}{z}\\left(1-\\dfrac{1}{z}+\\dfrac{1}{z^2}+...\\right)"
Comments
Leave a comment