a) Let z = x + i y z=x+iy z = x + i y , then:
z ⋅ z ‾ = ( x + i y ) ( x − i y ) = x 2 + y 2 = ∣ z ∣ 2 z\cdot \overline {z}=(x+iy)(x-iy)=x^2+y^2=|z|^2 z ⋅ z = ( x + i y ) ( x − i y ) = x 2 + y 2 = ∣ z ∣ 2
z + z ‾ = x + i y + x − i y = 2 x = 2 R e ( z ) z+\overline z=x+iy+x-iy=2x=2Re(z) z + z = x + i y + x − i y = 2 x = 2 R e ( z )
R e ( z ) = x = x 2 ≤ ∣ z ∣ = x 2 + y 2 Re(z)=x=\sqrt{x^2}\leq|z|=\sqrt{x^2+y^2} R e ( z ) = x = x 2 ≤ ∣ z ∣ = x 2 + y 2
i) Let z 1 = x 1 + i y 1 , z 2 = x 2 + i y 2 z_1=x_1+iy_1,z_2=x_2+iy_2 z 1 = x 1 + i y 1 , z 2 = x 2 + i y 2 , then:
∣ z 1 + z 2 ∣ 2 = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 ( x 1 x 2 + y 1 y 2 ) = |z_1+z_2|^2=(x_1+x_2)^2+(y_1+y_2)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)= ∣ z 1 + z 2 ∣ 2 = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 ( x 1 x 2 + y 1 y 2 ) =
= ∣ z 1 ∣ 2 + ∣ z 2 ∣ 2 + 2 R e ( z 1 z 2 ) =|z_1|^2+|z_2|^2+2Re(z_1z_2) = ∣ z 1 ∣ 2 + ∣ z 2 ∣ 2 + 2 R e ( z 1 z 2 )
ii)
∣ z 1 + z 2 ∣ = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 ( x 1 x 2 + y 1 y 2 ) |z_1+z_2|=\sqrt{(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)} ∣ z 1 + z 2 ∣ = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 ( x 1 x 2 + y 1 y 2 )
∣ z 1 ∣ + ∣ z 2 ∣ = x 1 2 + y 1 2 + x 2 2 + y 2 2 |z_1|+|z_2|=\sqrt{x_1^2+y_1^2}+\sqrt{x_2^2+y_2^2} ∣ z 1 ∣ + ∣ z 2 ∣ = x 1 2 + y 1 2 + x 2 2 + y 2 2
∣ z 1 + z 2 ∣ 2 = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 ( x 1 x 2 + y 1 y 2 ) |z_1+z_2|^2=(x_1+x_2)^2+(y_1+y_2)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2) ∣ z 1 + z 2 ∣ 2 = ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 ( x 1 x 2 + y 1 y 2 )
( ∣ z 1 ∣ + ∣ z 2 ∣ ) 2 = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 x 1 2 x 2 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 (|z_1|+|z_2|)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2\sqrt{x_1^2x_2^2+y_1^2y_2^2+x_1^2y_2^2+x_2^2y_1^2} ( ∣ z 1 ∣ + ∣ z 2 ∣ ) 2 = ( x 1 2 + y 1 2 ) + ( x 2 2 + y 2 2 ) + 2 x 1 2 x 2 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2
Since
x 1 x 2 + y 1 y 2 ≤ x 1 2 x 2 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2 x_1x_2+y_1y_2\leq\sqrt{x_1^2x_2^2+y_1^2y_2^2+x_1^2y_2^2+x_2^2y_1^2} x 1 x 2 + y 1 y 2 ≤ x 1 2 x 2 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + x 2 2 y 1 2
then
∣ z 1 + z 2 ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣ |z1 + z2| ≤ |z1| + |z2| ∣ z 1 + z 2∣ ≤ ∣ z 1∣ + ∣ z 2∣
Comments