a) Let "z=x+iy" , then:
"z\\cdot \\overline {z}=(x+iy)(x-iy)=x^2+y^2=|z|^2"
"z+\\overline z=x+iy+x-iy=2x=2Re(z)"
"Re(z)=x=\\sqrt{x^2}\\leq|z|=\\sqrt{x^2+y^2}"
i) Let "z_1=x_1+iy_1,z_2=x_2+iy_2" , then:
"|z_1+z_2|^2=(x_1+x_2)^2+(y_1+y_2)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)="
"=|z_1|^2+|z_2|^2+2Re(z_1z_2)"
ii)
"|z_1+z_2|=\\sqrt{(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)}"
"|z_1|+|z_2|=\\sqrt{x_1^2+y_1^2}+\\sqrt{x_2^2+y_2^2}"
"|z_1+z_2|^2=(x_1+x_2)^2+(y_1+y_2)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)"
"(|z_1|+|z_2|)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2\\sqrt{x_1^2x_2^2+y_1^2y_2^2+x_1^2y_2^2+x_2^2y_1^2}"
Since
"x_1x_2+y_1y_2\\leq\\sqrt{x_1^2x_2^2+y_1^2y_2^2+x_1^2y_2^2+x_2^2y_1^2}"
then
"|z1 + z2| \u2264 |z1| + |z2|"
Comments
Leave a comment