Question #124661
(a) Show that, for any complex number z, zz = |z|
2
, z + z = 2Re(z) and Re(z) ≤ |z|. Hence
show that
i. |z1 + z2|
2 = |z1|
2 + |z2|
2 + 2Re(z1z2),
ii. |z1 + z2| ≤ |z1| + |z2|,
where Re(z) is the real part of z and z the conjugate of z.
1
Expert's answer
2020-07-02T19:20:07-0400

a) Let z=x+iyz=x+iy , then:

zz=(x+iy)(xiy)=x2+y2=z2z\cdot \overline {z}=(x+iy)(x-iy)=x^2+y^2=|z|^2

z+z=x+iy+xiy=2x=2Re(z)z+\overline z=x+iy+x-iy=2x=2Re(z)

Re(z)=x=x2z=x2+y2Re(z)=x=\sqrt{x^2}\leq|z|=\sqrt{x^2+y^2}


i) Let z1=x1+iy1,z2=x2+iy2z_1=x_1+iy_1,z_2=x_2+iy_2 , then:

z1+z22=(x1+x2)2+(y1+y2)2=(x12+y12)+(x22+y22)+2(x1x2+y1y2)=|z_1+z_2|^2=(x_1+x_2)^2+(y_1+y_2)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)=

=z12+z22+2Re(z1z2)=|z_1|^2+|z_2|^2+2Re(z_1z_2)


ii)

z1+z2=(x12+y12)+(x22+y22)+2(x1x2+y1y2)|z_1+z_2|=\sqrt{(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)}

z1+z2=x12+y12+x22+y22|z_1|+|z_2|=\sqrt{x_1^2+y_1^2}+\sqrt{x_2^2+y_2^2}

z1+z22=(x1+x2)2+(y1+y2)2=(x12+y12)+(x22+y22)+2(x1x2+y1y2)|z_1+z_2|^2=(x_1+x_2)^2+(y_1+y_2)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2(x_1x_2+y_1y_2)

(z1+z2)2=(x12+y12)+(x22+y22)+2x12x22+y12y22+x12y22+x22y12(|z_1|+|z_2|)^2=(x_1^2+y_1^2)+(x_2^2+y_2^2)+2\sqrt{x_1^2x_2^2+y_1^2y_2^2+x_1^2y_2^2+x_2^2y_1^2}

Since

x1x2+y1y2x12x22+y12y22+x12y22+x22y12x_1x_2+y_1y_2\leq\sqrt{x_1^2x_2^2+y_1^2y_2^2+x_1^2y_2^2+x_2^2y_1^2}

then

z1+z2z1+z2|z1 + z2| ≤ |z1| + |z2|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS